Operaciones de TensorFlow disponibles
En esta página, se describen las API de Python para TensorFlow y los operadores de grafos disponibles en Cloud TPU.
API de Python disponibles
La siguiente lista es una guía para el conjunto de las API de TensorFlow disponibles. Esta lista no es exhaustiva. Las funciones de biblioteca que no aparecen en esta lista pueden funcionar si constan de las funciones básicas disponibles.
Consulta la guía de rendimiento para obtener recomendaciones sobre los operadores específicos.
Módulo | API de Python disponible | Comentarios |
---|---|---|
tf |
tf.abs |
|
tf.acosh |
||
tf.add |
||
tf.add_n |
||
tf.angle |
||
tf.arg_max |
El argumento dimension debe ser una constante de tiempo de compilación. |
|
tf.arg_min |
El argumento dimension debe ser una constante de tiempo de compilación. |
|
tf.asinh |
||
tf.assign |
Disponible solo para la variable de recurso. | |
tf.assign_add |
Disponible solo para la variable de recurso. | |
tf.assign_sub |
Disponible solo para la variable de recurso. | |
tf.atan |
||
tf.atan2 |
||
tf.atanh |
||
tf.batch_to_space |
Los argumentos crops y block_shape deben ser constantes de tiempo de compilación. |
|
tf.batch_to_space_nd |
El argumento crops debe ser una constante de tiempo de compilación. |
|
tf.broadcast_dynamic_shape |
||
tf.broadcast_static_shape |
||
tf.case |
Experimental (flujo de control). Es posible que aún no funcione de manera confiable. | |
tf.cast |
||
tf.ceil |
||
tf.cholesky |
Experimental. Puede tener problemas con la precisión numérica. | |
tf.cholesky_solve |
Experimental. Puede tener problemas con la precisión numérica. | |
tf.clip_by_average_norm |
||
tf.clip_by_global_norm |
||
tf.clip_by_norm |
||
tf.clip_by_value |
||
tf.complex |
||
tf.concat |
concat_dim debe ser una constante de tiempo de compilación. |
|
tf.cond |
Experimental (flujo de control). Es posible que aún no funcione de manera confiable. | |
tf.conj |
||
tf.constant |
||
tf.convert_to_tensor |
||
tf.cos |
||
tf.cosh |
||
tf.cross |
||
tf.cumprod |
axis debe ser una constante de tiempo de compilación. |
|
tf.cumsum |
axis debe ser una constante de tiempo de compilación. |
|
tf.depth_to_space |
||
tf.diag |
||
tf.diag_part |
||
tf.div |
La división int32 es más lenta que otros tipos. |
|
tf.divide |
La división int32 es más lenta que otros tipos. |
|
tf.dynamic_stitch |
indices debe ser una constante de tiempo de compilación. |
|
tf.einsum |
||
tf.equal |
||
tf.erf |
||
tf.erfc |
||
tf.exp |
||
tf.expand_dims |
dims debe ser una constante de tiempo de compilación. |
|
tf.expm1 |
||
tf.extract_image_patches |
||
tf.eye |
||
tf.fake_quant_with_min_max_args |
||
tf.fake_quant_with_min_max_args_gradient |
||
tf.fake_quant_with_min_max_vars |
||
tf.fake_quant_with_min_max_vars_gradient |
||
tf.fft |
||
tf.fft2d |
||
tf.fft3d |
||
tf.fill |
El argumento dims debe ser una constante de tiempo de compilación. |
|
tf.floor |
||
tf.floordiv |
||
tf.floormod |
||
tf.foldl |
Experimental (flujo de control). | |
tf.foldr |
Experimental (flujo de control). | |
tf.gather |
axis debe ser una constante de tiempo de compilación. |
|
tf.gather_nd |
||
tf.greater |
||
tf.greater_equal |
||
tf.hessians |
Experimental (flujo de control). | |
tf.identity |
||
tf.identity_n |
||
tf.ifft |
||
tf.ifft2d |
||
tf.ifft3d |
||
tf.imag |
||
tf.invert_permutation |
El argumento x debe ser una constante de tiempo de compilación. |
|
tf.is_finite |
||
tf.is_inf |
||
tf.is_nan |
||
tf.is_non_decreasing |
||
tf.is_strictly_increasing |
||
tf.less |
||
tf.less_equal |
||
tf.linspace |
Los argumentos start , stop y num deben ser constantes de tiempo de compilación. |
|
tf.log |
||
tf.log1p |
||
tf.log_sigmoid |
||
tf.logical_and |
||
tf.logical_or |
||
tf.logical_not |
||
tf.logical_xor |
||
tf.matmul |
Usa un matmul bfloat16 con acumulación float32 . |
|
tf.matrix_band_part |
||
tf.matrix_diag |
||
tf.matrix_diag_part |
||
tf.matrix_set_diag |
||
tf.matrix_triangular_solve |
Experimental. Puede tener problemas con la precisión numérica. | |
tf.maximum |
||
tf.meshgrid |
||
tf.minimum |
||
tf.mod |
||
tf.multinomial |
El argumento num_samples debe ser una constante de tiempo de compilación. |
|
tf.multiply |
||
tf.negative |
||
tf.no_op |
||
tf.norm |
||
tf.not_equal |
||
tf.one_hot |
depth debe ser una constante de tiempo de compilación. |
|
tf.ones |
||
tf.ones_like |
||
tf.pad |
El argumento paddings debe ser una constante de tiempo de compilación. La gradiente de relleno REFLECT aún no está disponible. |
|
tf.pow |
||
tf.random_normal |
shape debe ser una constante de tiempo de compilación. |
|
tf.random_uniform |
shape debe ser una constante de tiempo de compilación. |
|
tf.range |
Los argumentos start , limit y delta deben ser constantes de tiempo de compilación. |
|
tf.rank |
||
tf.real |
||
tf.realdiv |
||
tf.reciprocal |
||
tf.reduce_all |
axis debe ser una constante de tiempo de compilación. |
|
tf.reduce_any |
axis debe ser una constante de tiempo de compilación. |
|
tf.reduce_logsumexp |
||
tf.reduce_max |
axis debe ser una constante de tiempo de compilación. |
|
tf.reduce_min |
axis debe ser una constante de tiempo de compilación. |
|
tf.reduce_prod |
axis debe ser una constante de tiempo de compilación. |
|
tf.reduce_sum |
axis debe ser una constante de tiempo de compilación. |
|
tf.reshape |
El argumento shape debe ser una constante de tiempo de compilación. |
|
tf.reverse |
El argumento dims debe ser una constante de tiempo de compilación. |
|
tf.reverse_sequence |
||
tf.reverse_v2 |
El argumento axis debe ser una constante de tiempo de compilación. |
|
tf.rint |
||
tf.round |
||
tf.rsqrt |
||
tf.saturate_cast |
||
tf.scalar_mul |
||
tf.scan |
Experimental (flujo de control). | |
tf.scatter_nd |
||
tf.sequence_mask |
||
tf.shape |
||
tf.shape_n |
||
tf.sigmoid |
||
tf.sign |
||
tf.sin |
||
tf.sinh |
||
tf.size |
||
tf.slice |
size debe ser una constante de tiempo de compilación. Además, begin debe ser una constante de tiempo de compilación o size no debe ser negativo. La propagación inversa solo se admite si begin y size son constantes de tiempo de compilación. |
|
tf.space_to_batch |
paddings y block_shape deben ser constantes de tiempo de compilación. |
|
tf.space_to_batch_nd |
paddings debe ser una constante de tiempo de compilación. |
|
tf.space_to_depth |
||
tf.split |
axis debe ser una constante de tiempo de compilación. |
|
tf.sqrt |
||
tf.square |
||
tf.squared_difference |
||
tf.squeeze |
||
tf.stack |
||
tf.stop_gradient |
||
tf.strided_slice |
||
tf.tan |
||
tf.tanh |
||
tf.tensordot |
||
tf.tile |
El argumento multiples debe ser una constante de tiempo de compilación. |
|
tf.to_bfloat16 |
||
tf.to_float |
||
tf.to_int32 |
||
tf.to_int64 |
La compatibilidad con int64 es limitada. |
|
tf.trace |
||
tf.transpose |
El argumento perm debe ser una constante de tiempo de compilación. |
|
tf.truediv |
||
tf.truncated_normal |
shape debe ser una constante de tiempo de compilación. |
|
tf.truncatediv |
||
tf.truncatemod |
||
tf.unsorted_segment_sum |
||
tf.unstack |
||
tf.where |
Tanto x como y no deben ser None . Si tanto x como y son None , el operador no tendría una forma estática. |
|
tf.while_loop |
Para calcular el gradiente de un bucle mientras, se requiere el argumento maximum_iterations . |
|
tf.zeros |
||
tf.zeros_like |
||
tf.Tensor.__getitem__ |
El inicio, el final y las segmentaciones de un segmento deben ser constantes de tiempo de compilación. | |
tf.bitwise |
tf.bitwise_and |
|
tf.bitwise_or |
||
tf.bitwise_invert |
||
tf.contrib.stateless |
tf.contrib.stateless.stateless_random_normal |
|
tf.contrib.stateless.stateless_random_uniform |
||
tf.image |
tf.image.adjust_brightness |
|
tf.image.adjust_contrast |
||
tf.image.adjust_gamma |
||
tf.image.adjust_hue |
||
tf.image.adjust_saturation |
||
tf.image.central_crop |
El factor de recorte debe ser una constante de tiempo de compilación. | |
tf.image.convert_image_dtype |
||
tf.image.flip_left_right |
||
tf.image.flip_up_down |
||
tf.image.grayscale_to_rgb |
||
tf.image.hsv_to_rgb |
||
tf.image.resize_bilinear |
Solo está disponible align_corners=True . size debe ser una constante de tiempo de compilación. |
|
tf.image.random_brightness |
||
tf.image.random_contrast |
||
tf.image.random_flip_left_right |
||
tf.image.random_flip_up_down |
||
tf.image.random_hue |
||
tf.image.random_saturation |
||
tf.image.rgb_to_hsv |
||
tf.image.rgb_to_grayscale |
||
tf.image.rot90 |
||
tf.image.total_variation |
||
tf.image.transpose_image |
||
tf.layers |
tf.layers.average_pooling1d |
|
tf.layers.average_pooling2d |
||
tf.layers.average_pooling1d |
||
tf.layers.batch_normalization |
||
tf.layers.conv1d |
||
tf.layers.conv2d |
||
tf.layers.conv2d_transpose |
||
tf.layers.conv3d |
||
tf.layers.conv3d_transpose |
||
tf.layers.dense |
||
tf.layers.dropout |
||
tf.layers.flatten |
||
tf.layers.max_pooling1d |
||
tf.layers.max_pooling2d |
||
tf.layers.max_pooling3d |
||
tf.layers.separable_conv2d |
||
tf.nn |
tf.nn.atrous_conv2d |
|
tf.nn.atrous_conv2d_transpose |
||
tf.nn.avg_pool |
||
tf.nn.avg_pool3d |
||
tf.nn.batch_normalization |
||
tf.nn.bias_add |
||
tf.nn.conv1d |
||
tf.nn.conv2d |
||
tf.nn.conv2d_backprop_filter |
||
tf.nn.conv2d_backprop_input |
||
tf.nn.conv2d_transpose |
||
tf.nn.conv3d |
||
tf.nn.conv3d_backprop_filter |
||
tf.nn.conv3d_backprop_input |
||
tf.nn.conv3d_transpose |
||
tf.nn.convolution |
||
tf.nn.crelu |
||
tf.nn.depthwise_conv2d |
||
tf.nn.depthwise_conv2d_native |
||
tf.nn.depthwise_conv2d_native_backprop_filter |
||
tf.nn.depthwise_conv2d_native_backprop_input |
||
tf.nn.dropout |
||
tf.nn.dynamic_rnn |
Experimental. | |
tf.nn.elu |
||
tf.nn.fused_batch_norm |
||
tf.nn.l2_loss |
||
tf.nn.l2_normalize |
||
tf.nn.leaky_relu |
||
tf.nn.local_response_normalization |
||
tf.nn.log_poisson_loss |
||
tf.nn.log_softmax |
||
tf.nn.max_pool |
||
tf.nn.max_pool3d |
||
tf.nn.moments |
||
tf.nn.normalize_moments |
||
tf.nn.pool |
||
tf.nn.relu |
||
tf.nn.relu6 |
||
tf.nn.relu_layer |
||
tf.nn.selu |
||
tf.nn.separable_conv2d |
||
tf.nn.sigmoid_cross_entropy_with_logits |
||
tf.nn.softmax |
||
tf.nn.softmax_cross_entropy_with_logits |
||
tf.nn.softplus |
||
tf.nn.softsign |
||
tf.nn.sparse_softmax_cross_entropy_with_logits |
||
tf.nn.static_bidirectional_rnn |
Experimental. | |
tf.nn.static_rnn |
Experimental. | |
tf.nn.weighted_cross_entropy_with_logits |
Experimental. | |
tf.nn.weighted_moments |
||
tf.nn.with_space_to_batch |
||
tf.nn.xw_plus_b |
||
tf.nn.zero_fraction |
||
tf.spectral |
tf.spectral.fft |
|
tf.spectral.fft2d |
||
tf.spectral.fft3d |
||
tf.spectral.ifft |
||
tf.spectral.ifft2d |
||
tf.spectral.ifft3d |
||
tf.spectral.irfft |
fft_length debe ser una constante de tiempo de compilación. |
|
tf.spectral.irfft2d |
fft_length debe ser una constante de tiempo de compilación. |
|
tf.spectral.irfft3d |
fft_length debe ser una constante de tiempo de compilación. |
|
tf.spectral.rfft |
fft_length debe ser una constante de tiempo de compilación. |
|
tf.spectral.rfft2d |
fft_length debe ser una constante de tiempo de compilación. |
|
tf.spectral.rfft3d |
fft_length debe ser una constante de tiempo de compilación. |
API de Python no disponibles
Esta lista no es exhaustiva. A continuación, se muestran las opciones que no están disponibles en Cloud TPU:
Módulo | API de Python no disponible | Comentarios |
---|---|---|
tf |
tf.accumulate_n |
Usa las variables de referencia. |
tf.acos |
||
tf.asin |
||
tf.betainc |
||
tf.bitcast |
||
tf.add_check_numerics_ops |
Los programas que contienen operadores numéricos de verificación se deben ejecutar; sin embargo, este operador se ignora actualmente. | |
tf.assert_... |
Los programas que contienen confirmaciones se deben ejecutar; sin embargo, las confirmaciones se ignoran. | |
tf.check_numerics |
Los programas que contienen operadores numéricos de verificación se deben ejecutar; sin embargo, este operador se ignora actualmente. | |
tf.confusion_matrix |
||
tf.count_nonzero |
Usa la reducción int64 . |
|
tf.count_up_to |
||
tf.create_partitioned_variables |
||
tf.dequantize |
||
tf.digamma |
||
tf.dynamic_partition |
||
tf.edit_distance |
||
tf.fake_quant_with_min_max_vars_per_channel |
||
tf.fake_quant_with_min_max_vars_per_channel_gradient |
||
tf.histogram_fixed_width |
||
tf.igamma |
||
tf.igammac |
||
tf.lbeta |
||
tf.lgamma |
||
tf.matrix_determinant |
||
tf.matrix_inverse |
||
tf.matrix_solve |
||
tf.matrix_solve_ls |
||
tf.polygamma |
||
tf.py_func |
||
tf.qr |
||
tf.quantize_v2 |
||
tf.quantized_concat |
||
tf.random_crop |
||
tf.random_gamma |
||
tf.random_poisson |
||
tf.random_shuffle |
||
tf.scatter_add |
||
tf.scatter_div |
||
tf.scatter_mul |
||
tf.scatter_nd_add |
||
tf.scatter_nd_sub |
||
tf.scatter_nd_update |
||
tf.segment_mean |
||
tf.segment_max |
||
tf.segment_min |
||
tf.segment_prod |
||
tf.segment_sum |
||
tf.self_adjoint_eig |
||
tf.self_adjoint_eigvals |
||
tf.setdiff1d |
||
tf.sparse_... |
||
tf.string_... |
||
tf.substr |
||
tf.svd |
||
tf.to_double |
||
tf.unique |
||
tf.unsorted_segment_max |
||
tf.zeta |
||
tf.bitwise.bitwise_xor |
||
tf.contrib.stateless.stateless_truncated_normal |
Operadores de grafo disponibles
Operador | Restricción de tipo |
---|---|
Abs |
T={bfloat16,float,int32,int64} |
Acos |
T={bfloat16,complex64,float,int32,int64} |
Acosh |
T={bfloat16,complex64,float} |
Add |
T={bfloat16,complex64,float,int32,int64} |
AddN |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AdjustContrastv2 |
T={float} |
AdjustHue |
T={float} |
AdjustSaturation |
T={float} |
All |
Tidx={int32,int64} |
AllToAll |
T={bfloat16,float} |
Angle |
Tout={float} T={complex64} |
Any |
Tidx={int32,int64} |
ApproximateEqual |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ArgMax |
Tidx={int32,int64} output_type={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ArgMin |
Tidx={int32,int64} output_type={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Asin |
T={bfloat16,complex64,float,int32,int64} |
Asinh |
T={bfloat16,complex64,float} |
Assert |
T={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64} |
AssignAddVariableOp |
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AssignSubVariableOp |
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AssignVariableOp |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Atan |
T={bfloat16,complex64,float,int32,int64} |
Atan2 |
T={bfloat16,float} |
Atanh |
T={bfloat16,complex64,float} |
AvgPool |
T={bfloat16,float} |
AvgPool3D |
T={bfloat16,float} |
AvgPool3DGrad |
T={bfloat16,float} |
AvgPoolGrad |
T={bfloat16,float} |
BatchMatMul |
T={bfloat16,complex64,float,int32,int64} |
BatchToSpace |
Tidx={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
BatchToSpaceND |
Tcrops={int32,int64} Tblock_shape={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
BiasAdd |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BiasAddGrad |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BiasAddV1 |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Bitcast |
type={bfloat16,complex64,float,int32,int64,uint32,uint64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BitwiseAnd |
T={int32,int64,uint32,uint64} |
BitwiseOr |
T={int32,int64,uint32,uint64} |
BitwiseXor |
T={int32,int64,uint32,uint64} |
BroadcastArgs |
T={int32,int64} |
BroadcastGradientArgs |
T={int32,int64} |
BroadcastTo |
Tidx={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Bucketize |
T={float,int32,int64} |
Cast |
DstT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} SrcT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Ceil |
T={bfloat16,float} |
CheckNumerics |
T={bfloat16,float} |
Cholesky |
T={float} |
ClipByValue |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
CollectivePermute |
T={bfloat16,float} |
Complex |
Tout={complex64} T={float} |
ComplexAbs |
Tout={float} T={complex64} |
Concat |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ConcatOffset |
|
ConcatV2 |
Tidx={int32} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Conj |
T={complex64} |
ConjugateTranspose |
Tperm={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Const |
dtype={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64} |
ControlTrigger |
|
Conv2D |
T={bfloat16,float} |
Conv2DBackpropFilter |
T={bfloat16,float} |
Conv2DBackpropInput |
T={bfloat16,float} |
Conv3D |
T={bfloat16,float} |
Conv3DBackpropFilterV2 |
T={bfloat16,float} |
Conv3DBackpropInputV2 |
Tshape={int32,int64} T={bfloat16,float} |
Cos |
T={bfloat16,complex64,float} |
Cosh |
T={bfloat16,complex64,float} |
Cross |
T={bfloat16,float,int32,int64,uint32,uint64} |
CrossReplicaSum |
T={bfloat16,float} |
Cumprod |
Tidx={int32,int64} T={bfloat16,float,int32} |
Cumsum |
Tidx={int32,int64} T={bfloat16,float,int32} |
DataFormatVecPermute |
T={int32,int64} |
DepthToSpace |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
DepthwiseConv2dNative |
T={bfloat16,float} |
DepthwiseConv2dNativeBackpropFilter |
T={bfloat16,float} |
DepthwiseConv2dNativeBackpropInput |
T={bfloat16,float} |
Diag |
T={bfloat16,complex64,float,int32,int64} |
DiagPart |
T={bfloat16,complex64,float,int32,int64} |
Digamma |
T={bfloat16,float} |
Div |
T={bfloat16,complex64,float,int32,int64} |
DivNoNan |
T={float} |
DynamicStitch |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Elu |
T={bfloat16,float} |
EluGrad |
T={bfloat16,float} |
Empty |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
EmptyTensorList |
shape_type={int32,int64} element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Equal |
T={bfloat16,bool,complex64,float,int32,int64} |
Erf |
T={bfloat16,float} |
Erfc |
T={bfloat16,float} |
Exp |
T={bfloat16,complex64,float} |
ExpandDims |
Tdim={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Expm1 |
T={bfloat16,complex64,float} |
ExtractImagePatches |
T={bfloat16,float,int32,int64,uint32,uint64} |
FFT |
Tcomplex={complex64} |
FFT2D |
Tcomplex={complex64} |
FFT3D |
Tcomplex={complex64} |
FakeParam |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
FakeQuantWithMinMaxArgs |
|
FakeQuantWithMinMaxArgsGradient |
|
FakeQuantWithMinMaxVars |
|
FakeQuantWithMinMaxVarsGradient |
|
Fill |
index_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Floor |
T={bfloat16,float} |
FloorDiv |
T={bfloat16,complex64,float,int32,int64} |
FloorMod |
T={bfloat16,float,int32,int64} |
FusedBatchNorm |
T={float} |
FusedBatchNormGrad |
T={float} |
FusedBatchNormGradV2 |
U={float} T={bfloat16,float} |
FusedBatchNormV2 |
U={float} T={bfloat16,float} |
Gather |
Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GatherNd |
Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GatherV2 |
Taxis={int32,int64} Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GetItem |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Greater |
T={bfloat16,float,int32,int64,uint32,uint64} |
GreaterEqual |
T={bfloat16,float,int32,int64,uint32,uint64} |
HSVToRGB |
T={bfloat16,float} |
IFFT |
Tcomplex={complex64} |
IFFT2D |
Tcomplex={complex64} |
IFFT3D |
Tcomplex={complex64} |
IRFFT |
|
IRFFT2D |
|
IRFFT3D |
|
Identity |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
IdentityN |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
If |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Imag |
Tout={float} T={complex64} |
InfeedDequeue |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InfeedDequeueTuple |
dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InplaceAdd |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InplaceUpdate |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Inv |
T={bfloat16,complex64,float,int32,int64} |
Invert |
T={int32,int64,uint32,uint64} |
InvertPermutation |
T={int32} |
IsFinite |
T={bfloat16,float} |
IsInf |
T={bfloat16,float} |
IsNan |
T={bfloat16,float} |
L2Loss |
T={bfloat16,float} |
LRN |
T={bfloat16,float} |
LRNGrad |
T={bfloat16,float} |
LeakyRelu |
T={bfloat16,float} |
LeakyReluGrad |
T={bfloat16,float} |
LeftShift |
T={int32,int64,uint32,uint64} |
Less |
T={bfloat16,float,int32,int64,uint32,uint64} |
LessEqual |
T={bfloat16,float,int32,int64,uint32,uint64} |
Lgamma |
T={bfloat16,float} |
LinSpace |
Tidx={int32,int64} T={bfloat16,float} |
ListDiff |
out_idx={int32,int64} T={int32,int64} |
Log |
T={bfloat16,complex64,float} |
Log1p |
T={bfloat16,complex64,float} |
LogSoftmax |
T={bfloat16,float} |
LogicalAnd |
|
LogicalNot |
|
LogicalOr |
|
MatMul |
T={bfloat16,complex64,float} |
MatrixBandPart |
Tindex={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixDiag |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixDiagPart |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixSetDiag |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixTriangularSolve |
T={complex64,float} |
Max |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
MaxPool |
T={bfloat16,float,int32,int64} |
MaxPool3D |
T={bfloat16,float} |
MaxPool3DGrad |
TInput={bfloat16,float} T={bfloat16,float} |
MaxPool3DGradGrad |
T={float} |
MaxPoolGrad |
T={bfloat16,float,int32,int64,uint32,uint64} |
MaxPoolGradGrad |
T={float} |
MaxPoolGradGradV2 |
T={float} |
MaxPoolGradV2 |
T={bfloat16,float,int32,int64,uint32,uint64} |
MaxPoolV2 |
T={bfloat16,float,int32,int64} |
Maximum |
T={bfloat16,float,int32,int64} |
Mean |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Min |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Minimum |
T={bfloat16,float,int32,int64} |
MirrorPad |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Mod |
T={bfloat16,float,int32,int64} |
Mul |
T={bfloat16,complex64,float,int32,int64} |
Multinomial |
output_dtype={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
Neg |
T={bfloat16,complex64,float,int32,int64} |
NoOp |
|
NonMaxSuppressionV4 |
T={float} |
NotEqual |
T={bfloat16,bool,complex64,float,int32,int64} |
OneHot |
TI={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
OnesLike |
T={bfloat16,bool,complex64,float,int32,int64} |
OutfeedEnqueue |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
OutfeedEnqueueTuple |
dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pack |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pad |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
PadV2 |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ParallelDynamicStitch |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
PlaceholderWithDefault |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pow |
T={bfloat16,complex64,float,int32,int64} |
PreventGradient |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Prod |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Qr |
T={float} |
QuantizeAndDequantizeV2 |
T={bfloat16,float} |
QuantizeAndDequantizeV3 |
T={bfloat16,float} |
RFFT |
|
RFFT2D |
|
RFFT3D |
|
RGBToHSV |
T={bfloat16,float} |
RandomShuffle |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
RandomStandardNormal |
T={int32,int64} dtype={bfloat16,float} |
RandomUniform |
T={int32,int64} dtype={bfloat16,float} |
RandomUniformInt |
T={int32,int64} Tout={int32,int64} |
Range |
Tidx={bfloat16,float,int32,int64} |
Rank |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ReadVariableOp |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Real |
Tout={float} T={complex64} |
RealDiv |
T={bfloat16,complex64,float,int32,int64} |
Reciprocal |
T={bfloat16,complex64,float,int32,int64} |
ReciprocalGrad |
T={bfloat16,complex64,float} |
RecvTPUEmbeddingActivations |
|
Relu |
T={bfloat16,float,int32,int64,uint32,uint64} |
Relu6 |
T={bfloat16,float,int32,int64,uint32,uint64} |
Relu6Grad |
T={bfloat16,float,int32,int64,uint32,uint64} |
ReluGrad |
T={bfloat16,float,int32,int64,uint32,uint64} |
Reshape |
Tshape={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResizeBilinear |
T={bfloat16,float,int32,int64} |
ResizeBilinearGrad |
T={bfloat16,float} |
ResizeNearestNeighbor |
T={float,int32,int64} |
ResourceApplyAdaMax |
T={bfloat16,float} |
ResourceApplyAdadelta |
T={bfloat16,float} |
ResourceApplyAdagrad |
T={bfloat16,float} |
ResourceApplyAdagradDA |
T={bfloat16,float} |
ResourceApplyAdam |
T={bfloat16,float} |
ResourceApplyAddSign |
T={bfloat16,float} |
ResourceApplyCenteredRMSProp |
T={bfloat16,float} |
ResourceApplyFtrl |
T={bfloat16,float} |
ResourceApplyFtrlV2 |
T={bfloat16,float} |
ResourceApplyGradientDescent |
T={bfloat16,float} |
ResourceApplyKerasMomentum |
T={bfloat16,float} |
ResourceApplyMomentum |
T={bfloat16,float} |
ResourceApplyPowerSign |
T={bfloat16,float} |
ResourceApplyProximalAdagrad |
T={bfloat16,float} |
ResourceApplyProximalGradientDescent |
T={bfloat16,float} |
ResourceApplyRMSProp |
T={bfloat16,float} |
ResourceGather |
Tindices={int32,int64} dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterAdd |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterDiv |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMax |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMin |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMul |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdAdd |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdSub |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdUpdate |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterSub |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterUpdate |
Tindices={int32,int64} dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceStridedSliceAssign |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Reverse |
T={bool,complex64,float,int32,int64} |
ReverseSequence |
Tlen={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ReverseV2 |
T={bfloat16,bool,complex64,float,int32,int64} Tidx={int32,int64} |
RightShift |
T={int32,int64,uint32,uint64} |
Rint |
T={bfloat16,float} |
Round |
T={bfloat16,complex64,float,int32,int64} |
Rsqrt |
T={bfloat16,complex64,float} |
RsqrtGrad |
T={bfloat16,complex64,float} |
ScatterNd |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Select |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Selu |
T={bfloat16,float} |
SeluGrad |
T={bfloat16,float} |
SendTPUEmbeddingGradients |
|
Shape |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ShapeN |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sigmoid |
T={bfloat16,complex64,float} |
SigmoidGrad |
T={bfloat16,complex64,float} |
Sign |
T={bfloat16,complex64,float,int32,int64} |
Sin |
T={bfloat16,complex64,float} |
Sinh |
T={bfloat16,complex64,float} |
Size |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Slice |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Snapshot |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Softmax |
T={bfloat16,float} |
SoftmaxCrossEntropyWithLogits |
T={bfloat16,float} |
Softplus |
T={bfloat16,float} |
SoftplusGrad |
T={bfloat16,float} |
Softsign |
T={bfloat16,float} |
SoftsignGrad |
T={bfloat16,float} |
SpaceToBatch |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SpaceToBatchND |
Tblock_shape={int32,int64} Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SpaceToDepth |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SparseMatMul |
Tb={bfloat16,float} Ta={bfloat16,float} |
SparseSoftmaxCrossEntropyWithLogits |
Tlabels={int32,int64} T={bfloat16,float} |
SparseToDense |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Split |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SplitV |
Tlen={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sqrt |
T={bfloat16,complex64,float} |
SqrtGrad |
T={bfloat16,complex64,float} |
Square |
T={bfloat16,complex64,float,int32,int64} |
SquaredDifference |
T={bfloat16,complex64,float,int32,int64} |
Squeeze |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackCloseV2 |
|
StackPopV2 |
elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackPushV2 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackV2 |
elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StatelessIf |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
StatelessMultinomial |
output_dtype={int32,int64} Tseed={int32} T={bfloat16,float} |
StatelessRandomNormal |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessRandomUniform |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessRandomUniformInt |
Tseed={int32} T={int32,int64} dtype={int32,int64} |
StatelessTruncatedNormal |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessWhile |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
StopGradient |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StridedSlice |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StridedSliceGrad |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sub |
T={bfloat16,complex64,float,int32,int64} |
Sum |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
SymbolicGradient |
Tout={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TPUEmbeddingActivations |
|
Tan |
T={bfloat16,complex64,float,int32,int64} |
Tanh |
T={bfloat16,complex64,float} |
TanhGrad |
T={bfloat16,complex64,float} |
TensorArrayCloseV3 |
|
TensorArrayConcatV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayGatherV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayGradV3 |
|
TensorArrayReadV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayScatterV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArraySizeV3 |
|
TensorArraySplitV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayWriteV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListElementShape |
shape_type={int32,int64} |
TensorListPopBack |
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListPushBack |
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListReserve |
shape_type={int32,int64} element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Tile |
Tmultiples={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TopKV2 |
T={bfloat16,float,int32,uint32} |
Transpose |
Tperm={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TruncateDiv |
T={bfloat16,complex64,float,int32,int64} |
TruncateMod |
T={bfloat16,float,int32,int64} |
TruncatedNormal |
T={int32,int64} dtype={float} |
Unpack |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
UnsortedSegmentMax |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
UnsortedSegmentMin |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
UnsortedSegmentProd |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
UnsortedSegmentSum |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
VarIsInitializedOp |
|
VariableShape |
out_type={int32,int64} |
While |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Xdivy |
T={complex64,float} |
XlaBroadcastHelper |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaConv |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaDequantize |
|
XlaDot |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaDynamicSlice |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaDynamicUpdateSlice |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaHostCompute |
Toutputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tinputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaIf |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
XlaKeyValueSort |
V={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} K={bfloat16,float,int32,int64,uint32,uint64} |
XlaPad |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaRecv |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaRecvFromHost |
Toutput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaReduce |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaReduceWindow |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaSelectAndScatter |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaSend |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaSendToHost |
Tinput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaSort |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaWhile |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Xlogy |
T={complex64,float} |
ZerosLike |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_Arg |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
_ArrayToList |
out_types={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_ListToArray |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_Retval |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |