Trascrizione di un file locale utilizzando un modello di riconoscimento vocale avanzato

Trascrivi un file audio locale specificando un modello avanzato.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Go

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta la sezione Librerie client di Speech-to-Text. Per saperne di più, consulta la documentazione di riferimento dell'API Speech-to-Text per Go.

Per autenticarti in Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


func enhancedModel(w io.Writer) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	data, err := os.ReadFile("../testdata/commercial_mono.wav")
	if err != nil {
		return fmt.Errorf("ReadFile: %w", err)
	}

	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 8000,
			LanguageCode:    "en-US",
			UseEnhanced:     true,
			// A model must be specified to use enhanced model.
			Model: "phone_call",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Content{Content: data},
		},
	})
	if err != nil {
		return fmt.Errorf("client.Recognize: %w", err)
	}

	for i, result := range resp.Results {
		fmt.Fprintf(w, "%s\n", strings.Repeat("-", 20))
		fmt.Fprintf(w, "Result %d\n", i+1)
		for j, alternative := range result.Alternatives {
			fmt.Fprintf(w, "Alternative %d: %s\n", j+1, alternative.Transcript)
		}
	}
	return nil
}

Java

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta la sezione Librerie client di Speech-to-Text. Per saperne di più, consulta la documentazione di riferimento dell'API Speech-to-Text per Java.

Per autenticarti in Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

/**
 * Transcribe the given audio file using an enhanced model.
 *
 * @param fileName the path to an audio file.
 */
public static void transcribeFileWithEnhancedModel(String fileName) throws Exception {
  Path path = Paths.get(fileName);
  byte[] content = Files.readAllBytes(path);

  try (SpeechClient speechClient = SpeechClient.create()) {
    // Get the contents of the local audio file
    RecognitionAudio recognitionAudio =
        RecognitionAudio.newBuilder().setContent(ByteString.copyFrom(content)).build();

    // Configure request to enable enhanced models
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            .setSampleRateHertz(8000)
            .setUseEnhanced(true)
            // A model must be specified to use enhanced model.
            .setModel("phone_call")
            .build();

    // Perform the transcription request
    RecognizeResponse recognizeResponse = speechClient.recognize(config, recognitionAudio);

    // Print out the results
    for (SpeechRecognitionResult result : recognizeResponse.getResultsList()) {
      // There can be several alternative transcripts for a given chunk of speech. Just use the
      // first (most likely) one here.
      SpeechRecognitionAlternative alternative = result.getAlternatives(0);
      System.out.format("Transcript: %s\n\n", alternative.getTranscript());
    }
  }
}

Node.js

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta la sezione Librerie client di Speech-to-Text. Per saperne di più, consulta la documentazione di riferimento dell'API Speech-to-Text per Node.js.

Per autenticarti in Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

// Imports the Google Cloud client library for Beta API
/**
 * TODO(developer): Update client library import to use new
 * version of API when desired features become available
 */
const speech = require('@google-cloud/speech').v1p1beta1;
const fs = require('fs');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  languageCode: languageCode,
  useEnhanced: true,
  model: 'phone_call',
};
const audio = {
  content: fs.readFileSync(filename).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file
const [response] = await client.recognize(request);
response.results.forEach(result => {
  const alternative = result.alternatives[0];
  console.log(alternative.transcript);
});

PHP

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta la sezione Librerie client di Speech-to-Text.

Per autenticarti in Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

use Google\Cloud\Speech\V1\SpeechClient;
use Google\Cloud\Speech\V1\RecognitionAudio;
use Google\Cloud\Speech\V1\RecognitionConfig;
use Google\Cloud\Speech\V1\RecognitionConfig\AudioEncoding;

/**
 * @param string $audioFile path to an audio file
 */
function transcribe_enhanced_model(string $audioFile)
{
    // change these variables if necessary
    $encoding = AudioEncoding::LINEAR16;
    $sampleRateHertz = 8000;
    $languageCode = 'en-US';

    // get contents of a file into a string
    $content = file_get_contents($audioFile);

    // set string as audio content
    $audio = (new RecognitionAudio())
        ->setContent($content);

    // set config
    $config = (new RecognitionConfig())
        ->setEncoding($encoding)
        ->setSampleRateHertz($sampleRateHertz)
        ->setLanguageCode($languageCode)
        ->setUseEnhanced(true)
        ->setModel('phone_call');

    // create the speech client
    $client = new SpeechClient();

    // make the API call
    $response = $client->recognize($config, $audio);
    $results = $response->getResults();

    // print results
    foreach ($results as $result) {
        $alternatives = $result->getAlternatives();
        $mostLikely = $alternatives[0];
        $transcript = $mostLikely->getTranscript();
        $confidence = $mostLikely->getConfidence();
        printf('Transcript: %s' . PHP_EOL, $transcript);
        printf('Confidence: %s' . PHP_EOL, $confidence);
    }

    $client->close();
}

Python

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta la sezione Librerie client di Speech-to-Text. Per saperne di più, consulta la documentazione di riferimento dell'API Speech-to-Text per Python.

Per autenticarti in Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


from google.cloud import speech


def transcribe_file_with_enhanced_model(audio_file: str) -> speech.RecognizeResponse:
    """Transcribe the given audio file using an enhanced model.
    Args:
        audio_file (str): Path to the local audio file to be transcribed.
            Example: "resources/commercial_mono.wav"
    Returns:
        speech.RecognizeResponse: The response containing the transcription results.
    """

    client = speech.SpeechClient()

    # audio_file = 'resources/commercial_mono.wav'
    with open(audio_file, "rb") as f:
        audio_content = f.read()

    audio = speech.RecognitionAudio(content=audio_content)
    config = speech.RecognitionConfig(
        encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=8000,
        language_code="en-US",
        use_enhanced=True,
        # A model must be specified to use enhanced model.
        model="phone_call",
    )

    response = client.recognize(config=config, audio=audio)

    for i, result in enumerate(response.results):
        alternative = result.alternatives[0]
        print("-" * 20)
        print(f"First alternative of result {i}")
        print(f"Transcript: {alternative.transcript}")

    return response

Ruby

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta la sezione Librerie client di Speech-to-Text.

Per autenticarti in Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

# audio_file_path = "path/to/audio.wav"

require "google/cloud/speech"

speech = Google::Cloud::Speech.speech version: :v1

config = {
  encoding:          :LINEAR16,
  sample_rate_hertz: 8000,
  language_code:     "en-US",
  use_enhanced:      true,
  model:             "phone_call"
}

audio_file = File.binread audio_file_path
audio      = { content: audio_file }

operation = speech.long_running_recognize config: config, audio: audio

puts "Operation started"

operation.wait_until_done!

raise operation.results.message if operation.error?

results = operation.response.results

results.each_with_index do |result, i|
  alternative = result.alternatives.first
  puts "-" * 20
  puts "First alternative of result #{i}"
  puts "Transcript: #{alternative.transcript}"
end

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .