Envoyer les résultats des jobs d'inspection de la protection des données sensibles à Security Command Center

Ce guide vous explique comment inspecter les données dans Cloud Storage, Firestore en mode Datastore (Datastore) ou BigQuery, et envoyer les résultats de l'inspection à Security Command Center.

Pour les données BigQuery, vous pouvez également effectuer un profilage, qui est différent d'une opération d'inspection. Vous pouvez également envoyer des profils de données à Security Command Center. Pour en savoir plus, consultez Publier des profils de données dans Security Command Center.

Présentation

Security Command Center vous permet de collecter des données, d'identifier des menaces de sécurité et d'agir en conséquence avant que ces menaces n'entraînent des dommages ou des pertes commerciales. Avec Security Command Center, vous pouvez effectuer plusieurs actions liées à la sécurité à partir d'un seul tableau de bord centralisé.

La protection des données sensibles est intégrée à Security Command Center. Lorsque vous utilisez une action de protection des données sensibles pour inspecter vos dépôts de stockageGoogle Cloud à la recherche de données sensibles, elle peut envoyer les résultats directement au tableau de bord Security Command Center. Ces résultats s'affichent à côté d'autres métriques de sécurité.

Suivez les étapes décrites dans ce guide pour effectuer les opérations suivantes :

  • Activez Security Command Center et la protection des données sensibles.
  • Configurez la protection des données sensibles pour inspecter un dépôt de stockage Google Cloud (bucket Cloud Storage, table BigQuery ou genre Datastore).
  • Configurer une analyse de protection des données sensibles pour envoyer les résultats de l'inspection à Security Command Center

Pour en savoir plus sur Security Command Center, consultez la documentation correspondante.

Si vous souhaitez envoyer les résultats des analyses de découverte (et non des tâches d'inspection) à Security Command Center, consultez plutôt la documentation sur le profilage d'une organisation, d'un dossier ou d'un projet.

Coûts

Dans ce document, vous utilisez les composants facturables suivants de Google Cloud :

  • Sensitive Data Protection
  • Cloud Storage
  • BigQuery
  • Datastore

Obtenez une estimation des coûts en fonction de votre utilisation prévue à l'aide du simulateur de coût. Les nouveaux utilisateurs de Google Cloud peuvent bénéficier d'un essai gratuit.

Avant de commencer

Avant de pouvoir envoyer les résultats des analyses de protection des données sensibles à Security Command Center, vous devez effectuer toutes les opérations suivantes:

  • Étape 1: Configurez les dépôts de stockage Google Cloud .
  • Étape 2 : Définir les rôles de gestion de l'authentification et des accès (IAM)
  • Étape 3 : Activer Security Command Center
  • Étape 4: Activez la protection des données sensibles.
  • Étape 5: Activez la protection des données sensibles en tant que source de sécurité pour Security Command Center.

Les étapes de configuration de ces composants sont décrites dans les sections suivantes.

Étape 1: Configurer les dépôts de stockage Google Cloud

Indiquez si vous souhaitez analyser votre propre dépôt de stockage Google Cloud ou un exemple de dépôt. Cet article fournit des instructions pour les deux scénarios.

Analyser vos propres données

Si vous souhaitez analyser votre bucket Cloud Storage, votre table BigQuery ou votre genre Datastore, ouvrez d'abord le projet dans lequel se trouve le dépôt. Dans les étapes suivantes, vous allez activer Security Command Center et la protection des données sensibles pour ce projet et son organisation.

Après avoir ouvert le projet que vous souhaitez utiliser, passez à l'étape 2 pour configurer certains rôles IAM.

Analyser des exemples de données

Si vous souhaitez analyser un ensemble de données de test, commencez par vérifier qu'un compte de facturation est configuré, puis créez un projet. Pour réaliser cette étape, vous devez disposer du rôle IAM Créateur de projet. En savoir plus sur les rôles IAM

  1. Si vous n'avez pas encore configuré la facturation, configurez un compte de facturation.

    Découvrir comment activer la facturation

  2. Accédez à la page Nouveau projet dans la console Google Cloud .

    Accéder à "Nouveau projet"

  3. Dans la liste déroulante Compte de facturation, sélectionnez le compte de facturation auquel le projet doit être rattaché.
  4. Dans la liste déroulante Organisation, sélectionnez l'organisation dans laquelle vous souhaitez créer le projet.
  5. Dans la liste déroulante Emplacement, sélectionnez l'organisation ou le dossier dans lequel vous souhaitez créer le projet.

Ensuite, téléchargez et stockez les exemples de données.

  1. Accédez au dépôt des tutoriels sur les fonctions Cloud Run sur GitHub.
  2. Cliquez sur Clone or download (Cloner ou télécharger), puis sur Download ZIP (Télécharger le fichier ZIP).
  3. Décompressez le fichier ZIP que vous avez téléchargé.
  4. Accédez à la page Navigateur de stockage dans la console Google Cloud .

    Accéder à Cloud Storage

  5. Cliquez sur Créer un bucket.
  6. Sur la page Créer un bucket, attribuez un nom unique au bucket, puis cliquez sur Créer.
  7. Sur la page Informations sur le bucket, cliquez sur Importer un dossier.
  8. Accédez au dossier dlp-cloud-functions-tutorials-master que vous avez extrait, ouvrez-le, puis sélectionnez le dossier sample_data. Cliquez sur Importer pour importer le contenu du dossier dans Cloud Storage.

Notez le nom du bucket Cloud Storage pour l'utiliser plus tard. Une fois l'importation des fichiers terminée, vous pouvez continuer la procédure.

Étape 2 : Définir les rôles IAM

Pour utiliser la protection des données sensibles pour envoyer les résultats des analyses à Security Command Center, vous devez disposer des rôles IAM Administrateur du centre de sécurité et Éditeur de tâches Sensitive Data Protection. Cette section décrit comment ajouter ces rôles. Pour renseigner cette section, vous devez disposer du rôle IAM Administrateur de l'organisation.

  1. Accédez à la page IAM.

    Accéder à IAM

  2. Dans l'onglet Afficher par comptes principaux, recherchez votre compte Google, puis cliquez sur Modifier le compte principal.
  3. Ajoutez les rôles Security Center Admin (Administrateur du centre de sécurité) et Sensitive Data Protection Jobs Editor (Éditeur de tâches Sensitive Data Protection) :

    1. Dans le panneau Modifier les accès, cliquez sur Ajouter un autre rôle.
    2. Dans la liste Sélectionner un rôle, recherchez Security Center Admin, puis sélectionnez-le.
    3. Cliquez sur Ajouter un autre rôle.
    4. Dans la liste Sélectionner un rôle, recherchez Éditeur de tâches DLP, puis sélectionnez-le.
    5. Cliquez sur Enregistrer.

Vous disposez désormais des rôles "Éditeur de tâches Sensitive Data Protection" et "Administrateur du centre de sécurité" pour votre organisation. Ces rôles vous permettront de réaliser les tâches décrites ultérieurement dans cet article.

Étape 3 : Activer Security Command Center

  1. Accédez à la page Security Command Center dans la console Google Cloud .

    Accéder à Security Command Center

  2. Dans la liste déroulante Organisation, sélectionnez l'organisation pour laquelle vous souhaitez activer la protection des données sensibles, puis cliquez sur Sélectionner.

  3. Sur la page Activer la détection d'éléments qui s'affiche, sélectionnez Tous les projets actuels et futurs, puis cliquez sur Activer. Un message doit indiquer que Sensitive Data Protection lance la détection d'éléments.

Une fois la détection d'éléments terminée, la protection des données sensibles affiche les éléments Google Cloud compatibles. La détection d'éléments peut prendre quelques minutes. Vous devrez peut-être actualiser la page pour afficher les éléments.

Pour en savoir plus sur Security Command Center, consultez la documentation correspondante.

Étape 4: Activez la protection des données sensibles

Activez la protection des données sensibles pour le projet que vous souhaitez analyser. Le projet doit appartenir à l'organisation pour laquelle vous avez activé Security Command Center. Pour activer la protection des données sensibles à l'aide de la consoleGoogle Cloud :

  1. Dans la console Google Cloud , accédez à la page Activer l'accès aux API.

    Activer l'API

  2. Dans la barre d'outils, sélectionnez le projet de l'étape 1 de ce guide. Le projet doit contenir le bucket Cloud Storage, la table BigQuery ou le genre Datastore que vous souhaitez analyser.
  3. Cliquez sur Suivant.
  4. Cliquez sur Activer.

Sensitive Data Protection est désormais activé pour votre projet.

Étape 5: Activer la protection des données sensibles en tant que service intégré pour Security Command Center

Pour afficher les résultats de l'analyse de la protection des données sensibles dans Security Command Center, activez Protection des données sensibles en tant que service intégré. Pour en savoir plus, consultez la section Ajouter un service intégré Google Cloud dans la documentation de Security Command Center.

Les résultats de la protection des données sensibles s'affichent sur la page Résultats de Security Command Center.

Configurer et exécuter une analyse d'inspection dans le cadre de la protection des données sensibles

Dans cette section, vous allez configurer et exécuter une tâche d'inspection dans le cadre de la protection des données sensibles.

La tâche d'inspection que vous configurez ici indique à la protection des données sensibles d'analyser les exemples de données stockés dans Cloud Storage ou vos propres données stockées dans Cloud Storage, Datastore ou BigQuery. C'est également dans la configuration de tâche que vous demandez à Sensitive Data Protection d'enregistrer ses résultats d'analyse dans Security Command Center.

Étape 1 : Noter l'identifiant du projet

  1. Accédez à la console Google Cloud .

    Accédez à la console Google Cloud .

  2. Cliquez sur Sélectionner.
  3. Dans la liste déroulante Sélectionnez une organisation, sélectionnez l'organisation pour laquelle vous avez activé Security Command Center.
  4. Sous ID, copiez l'ID du projet qui contient les données à analyser.
  5. Dans le champ Nom, cliquez sur le projet pour le sélectionner.

Étape 2 : Ouvrir APIs Explorer et configurer la tâche

  1. Pour accéder à APIs Explorer sur la page de référence de la méthode dlpJobs.create, cliquez sur le bouton suivant :

    Ouvrir API Explorer

  2. Dans la zone parent, saisissez la chaîne suivante, où PROJECT_ID correspond à l'ID du projet noté à l'étape 1 :
    projects/PROJECT_ID

Remplacez le contenu du champ Corps de la requête par le code JSON ci-dessous pour le type de données que vous souhaitez utiliser, à savoir des exemples de données dans un bucket Cloud Storage ou vos propres données stockées dans Cloud Storage, Datastore ou BigQuery.

Exemples de données

Si vous avez créé un bucket Cloud Storage pour stocker des exemples de données, copiez le code JSON suivant, puis collez-le dans le champ Corps de la requête. Remplacez BUCKET_NAME par le nom de votre bucket Cloud Storage :

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://BUCKET_NAME/**"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"EMAIL_ADDRESS"
        },
        {
          "name":"PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "includeQuote":true,
      "minLikelihood":"UNLIKELY",
      "limits":{
        "maxFindingsPerRequest":100
      }
    },
    "actions":[
      {
        "publishSummaryToCscc":{

        }
      }
    ]
  }
}

Données Cloud Storage

Pour analyser votre propre bucket Cloud Storage, copiez le code JSON ci-dessous, puis collez-le dans le champ Corps de la requête.

Remplacez PATH_NAME par le chemin d'accès à l'emplacement que vous souhaitez analyser. Pour effectuer une analyse récursive, ajoutez deux astérisques à la fin du chemin (par exemple, gs://path_to_files/**). Pour limiter l'analyse à un répertoire spécifié, ajoutez un astérisque (par exemple, gs://path_to_files/*).

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://PATH_NAME"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"EMAIL_ADDRESS"
        },
        {
          "name":"PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "includeQuote":true,
      "minLikelihood":"UNLIKELY",
      "limits":{
        "maxFindingsPerRequest":100
      }
    },
    "actions":[
      {
        "publishSummaryToCscc":{

        }
      }
    ]
  }
}

Pour en savoir plus sur les options d'analyse disponibles, consultez la page Inspecter le stockage et les bases de données pour identifier les données sensibles.

Données Cloud Datastore

Pour analyser vos propres données stockées dans Datastore, copiez le code JSON ci-dessous, puis collez-le dans le champ Corps de la requête.

Remplacez DATASTORE_KIND par le nom du genre Datastore. Vous pouvez également remplacer NAMESPACE_ID et PROJECT_ID respectivement par les identifiants de l'espace de noms et du projet, ou supprimer complètement "partitionID" si vous le souhaitez.

{
  "inspectJob":{
    "storageConfig":{
      "datastoreOptions":{
        "kind":{
          "name":"DATASTORE_KIND"
        },
        "partitionId":{
          "namespaceId":"NAMESPACE_ID",
          "projectId":"PROJECT_ID"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"EMAIL_ADDRESS"
        },
        {
          "name":"PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "includeQuote":true,
      "minLikelihood":"UNLIKELY",
      "limits":{
        "maxFindingsPerRequest":100
      }
    },
    "actions":[
      {
        "publishSummaryToCscc":{

        }
      }
    ]
  }
}

Pour en savoir plus sur les options d'analyse disponibles, consultez la page Inspecter le stockage et les bases de données pour identifier les données sensibles.

Données BigQuery

Pour analyser votre propre table BigQuery, copiez le code JSON ci-dessous, puis collez-le dans le champ Corps de la requête.

Remplacez PROJECT_ID, BIGQUERY_DATASET_NAME et BIGQUERY_TABLE_NAME respectivement par l'ID du projet et par les noms de l'ensemble de données et de la table BigQuery.

{
  "inspectJob":
  {
    "storageConfig":
    {
      "bigQueryOptions":
      {
        "tableReference":
        {
          "projectId": "PROJECT_ID",
          "datasetId": "BIGQUERY_DATASET_NAME",
          "tableId": "BIGQUERY_TABLE_NAME"
        }
      }
    },
    "inspectConfig":
    {
      "infoTypes":
      [
        {
          "name": "EMAIL_ADDRESS"
        },
        {
          "name": "PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name": "PHONE_NUMBER"
        }
      ],
      "includeQuote": true,
      "minLikelihood": "UNLIKELY",
      "limits":
      {
        "maxFindingsPerRequest": 100
      }
    },
    "actions":
    [
      {
        "publishSummaryToCscc":
        {
        }
      }
    ]
  }
}

Pour en savoir plus sur les options d'analyse disponibles, consultez la page Inspecter le stockage et les bases de données pour identifier les données sensibles.

Étape 3: Exécuter la requête pour lancer la tâche d'inspection

Après avoir configuré la tâche en suivant les étapes précédentes, cliquez sur Exécuter pour envoyer la requête. Si la requête aboutit, une réponse s'affiche sous la requête avec un code de réussite et un objet JSON indiquant l'état de la tâche de protection des données sensibles que vous avez créée.

Vérifier l'état de l'analyse d'inspection dans le cadre de la protection des données sensibles

La réponse à votre requête d'analyse inclut l'ID de la tâche d'analyse d'inspection en tant que clé "name" et son état actuel en tant que clé "state". Immédiatement après l'envoi de la requête, l'état de la tâche est "PENDING".

L'analyse de votre contenu commence dès l'envoi de la requête.

Pour vérifier l'état de la tâche d'inspection:

  1. Pour accéder à APIs Explorer sur la page de référence de la méthode dlpJobs.get, cliquez sur le bouton suivant :

    Ouvrir API Explorer

  2. Dans la zone nom, indiquez au format suivant le nom de la tâche figurant dans la réponse JSON obtenue pour la requête d'analyse :
    projects/PROJECT_ID/dlpJobs/JOB_ID
    L'ID de la tâche se présente sous la forme i-1234567890123456789.
  3. Pour envoyer la requête, cliquez sur Exécuter.

Si la clé "state" de l'objet JSON de réponse indique que l'état de la tâche d'inspection est "DONE", celle-ci est terminée.

Pour afficher le reste de la réponse JSON, faites défiler la page vers le bas. À chaque type d'information répertorié sous "result" > "infoTypeStats" doit correspondre un élément "count". Si ce n'est pas le cas, vérifiez que le code JSON saisi est exact et que le chemin ou l'emplacement de vos données est correct.

Une fois la tâche d'inspection terminée, vous pouvez passer à la section suivante de ce guide pour afficher les résultats de l'analyse dans Security Command Center.

Exemples de code: inspecter un bucket Cloud Storage

Cet exemple montre comment utiliser l'API DLP pour créer une tâche d'inspection qui inspecte un bucket Cloud Storage et envoie les résultats à Security Command Center.

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using System.Collections.Generic;
using System.Linq;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectStorageWithSCCIntegration
{
    public static DlpJob SendGcsData(
        string projectId,
        string gcsPath,
        Likelihood minLikelihood = Likelihood.Unlikely,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Specify the GCS file to be inspected.
        var storageConfig = new StorageConfig
        {
            CloudStorageOptions = new CloudStorageOptions
            {
                FileSet = new CloudStorageOptions.Types.FileSet
                {
                    Url = gcsPath
                }
            }
        };

        // Specify the type of info to be inspected and construct the inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[]
                {
                    new InfoType { Name = "EMAIL_ADDRESS" },
                    new InfoType { Name = "PERSON_NAME" },
                    new InfoType { Name = "LOCATION" },
                    new InfoType { Name = "PHONE_NUMBER" }
                }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood,
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = 100
            }
        };

        // Construct the SCC action which will be performed after inspecting the storage.
        var actions = new Action[]
        {
            new Action
            {
                PublishSummaryToCscc = new Action.Types.PublishSummaryToCscc()
            }
        };

        // Construct the inspect job config using storage config, inspect config and action.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Construct the request.
        var request = new CreateDlpJobRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectJob = inspectJob
        };

        // Call the API.
        DlpJob response = dlp.CreateDlpJob(request);

        return response;
    }
}

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectGCSFileSendToScc inspects sensitive data in a Google Cloud Storage (GCS) file
// and sends the inspection results to Google Cloud Security Command Center (SCC) for further analysis.
func inspectGCSFileSendToScc(w io.Writer, projectID, gcsPath string) error {
	// projectID := "my-project-id"
	// gcsPath := "gs://" + "your-bucket-name" + "path/to/file.txt"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the GCS file to be inspected.
	cloudStorageOptions := &dlppb.CloudStorageOptions{
		FileSet: &dlppb.CloudStorageOptions_FileSet{
			Url: gcsPath,
		},
	}

	// storageCfg represents the configuration for data inspection in various storage types.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_CloudStorageOptions{
			CloudStorageOptions: cloudStorageOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "EMAIL_ADDRESS"},
		{Name: "PERSON_NAME"},
		{Name: "LOCATION"},
		{Name: "PHONE_NUMBER"},
	}

	// The minimum likelihood required before returning a match.
	minLikelihood := dlppb.Likelihood_UNLIKELY

	// The maximum number of findings to report (0 = server maximum).
	findingLimits := &dlppb.InspectConfig_FindingLimits{
		MaxFindingsPerItem: 100,
	}

	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:     infoTypes,
		MinLikelihood: minLikelihood,
		Limits:        findingLimits,
		IncludeQuote:  true,
	}

	// Specify the action that is triggered when the job completes.
	action := &dlppb.Action{
		Action: &dlppb.Action_PublishSummaryToCscc_{
			PublishSummaryToCscc: &dlppb.Action_PublishSummaryToCscc{},
		},
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Send the request.
	resp, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the result.
	fmt.Fprintf(w, "Job created successfully: %v", resp.Name)
	return nil
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectGcsFileSendToScc {

  private static final int TIMEOUT_MINUTES = 15;

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The name of the file in the Google Cloud Storage bucket.
    String gcsPath = "gs://" + "your-bucket-name" + "path/to/file.txt";
    createJobSendToScc(projectId, gcsPath);
  }

  // Creates a DLP Job to scan the sample data stored in a Cloud Storage and save its scan results
  // to Security Command Center.
  public static void createJobSendToScc(String projectId, String gcsPath)
      throws IOException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(CloudStorageOptions.FileSet.newBuilder().setUrl(gcsPath))
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder()
              .setCloudStorageOptions(cloudStorageOptions)
              .build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // The minimum likelihood required before returning a match.
      // See: https://cloud.google.com/dlp/docs/likelihood
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob response = dlpServiceClient.createDlpJob(createDlpJobRequest);
      // Get the current time.
      long startTime = System.currentTimeMillis();

      // Check if the job state is DONE.
      while (response.getState() != DlpJob.JobState.DONE) {
        // Sleep for 30 second.
        Thread.sleep(30000);

        // Get the updated job status.
        response = dlpServiceClient.getDlpJob(response.getName());

        // Check if the timeout duration has exceeded.
        long elapsedTime = System.currentTimeMillis() - startTime;
        if (TimeUnit.MILLISECONDS.toMinutes(elapsedTime) >= TIMEOUT_MINUTES) {
          System.out.printf("Job did not complete within %d minutes.%n", TIMEOUT_MINUTES);
          break;
        }
      }
      // Print the results.
      System.out.println("Job status: " + response.getState());
      System.out.println("Job name: " + response.getName());
      InspectDataSourceDetails.Result result = response.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlpClient = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'your-project-id';

// The name of the file in the bucket
// const gcsPath = 'gcs-file-path';

async function inspectGCSSendToScc() {
  // Specify the storage configuration object with GCS URL.
  const storageConfig = {
    cloudStorageOptions: {
      fileSet: {
        url: gcsPath,
      },
    },
  };

  // Construct the info types to look for in the GCS file.
  const infoTypes = [
    {name: 'EMAIL_ADDRESS'},
    {name: 'PERSON_NAME'},
    {name: 'LOCATION'},
    {name: 'PHONE_NUMBER'},
  ];

  // Construct the inspection configuration.
  const inspectConfig = {
    infoTypes,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.UNLIKELY,
    limits: {
      maxFindingsPerItem: 100,
    },
  };

  // Specify the action that is triggered when the job completes.
  const action = {
    publishSummaryToCscc: {},
  };

  // Configure the inspection job we want the service to perform.
  const jobConfig = {
    inspectConfig,
    storageConfig,
    actions: [action],
  };

  // Construct the job creation request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: jobConfig,
  };

  // Send the job creation request and process the response.
  const [jobsResponse] = await dlpClient.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Waiting for a maximum of 15 minutes for the job to get complete.
  let job;
  let numOfAttempts = 30;
  while (numOfAttempts > 0) {
    // Fetch DLP Job status
    [job] = await dlpClient.getDlpJob({name: jobName});

    // Check if the job has completed.
    if (job.state === 'DONE') {
      break;
    }
    if (job.state === 'FAILED') {
      console.log('Job Failed, Please check the configuration.');
      return;
    }
    // Sleep for a short duration before checking the job status again.
    await new Promise(resolve => {
      setTimeout(() => resolve(), 30000);
    });
    numOfAttempts -= 1;
  }

  // Print out the results.
  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectGCSSendToScc();

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\DlpJob\JobState;

/**
 * (GCS) Send Cloud DLP scan results to Security Command Center.
 * Using Cloud Data Loss Prevention to scan specific Google Cloud resources and send data to Security Command Center.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $gcsUri            GCS file to be inspected.
 */
function inspect_gcs_send_to_scc(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $gcsUri = 'gs://GOOGLE_STORAGE_BUCKET_NAME/dlp_sample.csv'
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Construct the items to be inspected.
    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet((new FileSet())
            ->setUrl($gcsUri));

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions(($cloudStorageOptions));

    // Specify the type of info the inspection will look for.
    $infoTypes = [
        (new InfoType())->setName('EMAIL_ADDRESS'),
        (new InfoType())->setName('PERSON_NAME'),
        (new InfoType())->setName('LOCATION'),
        (new InfoType())->setName('PHONE_NUMBER')
    ];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood(likelihood::UNLIKELY)
        ->setLimits((new FindingLimits())
            ->setMaxFindingsPerRequest(100))
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Construct inspect job config to run.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJobConfig
    ]);

    $numOfAttempts = 10;
    do {
        printf('Waiting for job to complete' . PHP_EOL);
        sleep(10);
        $job = $dlp->getDlpJob($job->getName());
        if ($job->getState() == JobState::DONE) {
            break;
        }
        $numOfAttempts--;
    } while ($numOfAttempts > 0);

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import time
from typing import List

import google.cloud.dlp


def inspect_gcs_send_to_scc(
    project: str,
    bucket: str,
    info_types: List[str],
    max_findings: int = 100,
) -> None:
    """
    Uses the Data Loss Prevention API to inspect Google Cloud Storage
    data and send the results to Google Security Command Center.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        info_types: A list of strings representing infoTypes to inspect for.
            A full list of infoType categories can be fetched from the API.
        max_findings: The maximum number of findings to report; 0 = no maximum.
    """
    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}"
    storage_config = {"cloud_storage_options": {"file_set": {"url": url}}}

    # Tell the API where to send a notification when the job is complete.
    actions = [{"publish_summary_to_cscc": {}}]

    # Construct the job definition.
    job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.create_dlp_job(
        request={
            "parent": parent,
            "inspect_job": job,
        }
    )
    print(f"Inspection Job started : {response.name}")

    job_name = response.name

    # Waiting for maximum 15 minutes for the job to get complete.
    no_of_attempts = 30
    while no_of_attempts > 0:
        # Get the DLP job status.
        job = dlp.get_dlp_job(request={"name": job_name})
        # Check if the job has completed.
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.DONE:
            break
        elif job.state == google.cloud.dlp_v2.DlpJob.JobState.FAILED:
            print("Job Failed, Please check the configuration.")
            return

        # Sleep for a short duration before checking the job status again.
        time.sleep(30)
        no_of_attempts -= 1

    # Print out the results.
    print(f"Job name: {job.name}")
    result = job.inspect_details.result
    print("Processed Bytes: ", result.processed_bytes)
    if result.info_type_stats:
        for stats in result.info_type_stats:
            print(f"Info type: {stats.info_type.name}")
            print(f"Count: {stats.count}")
    else:
        print("No findings.")

Exemples de code: inspecter une table BigQuery

Cet exemple montre comment utiliser l'API DLP pour créer une tâche d'inspection qui inspecte une table BigQuery et envoie les résultats à Security Command Center.

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using System.Collections.Generic;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQueryWithSCCIntegration
{
    public static DlpJob SendBigQueryData(
        string projectId,
        Likelihood minLikelihood = Likelihood.Unlikely,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct the storage config by providing the table to be inspected.
        var storageConfig = new StorageConfig
        {
            BigQueryOptions = new BigQueryOptions
            {
                TableReference = new BigQueryTable
                {
                    ProjectId = "bigquery-public-data",
                    DatasetId = "usa_names",
                    TableId = "usa_1910_current",
                }
            }
        };

        // Construct the inspect config by specifying the type of info to be inspected.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[]
                {
                    new InfoType { Name = "EMAIL_ADDRESS" },
                    new InfoType { Name = "PERSON_NAME" }
                }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood,
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = 100
            }
        };

        // Construct the SCC action which will be performed after inspecting the source.
        var actions = new Action[]
        {
            new Action
            {
                PublishSummaryToCscc = new Action.Types.PublishSummaryToCscc()
            }
        };

        // Construct the inspect job config using storage config, inspect config and action.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Construct the request.
        var request = new CreateDlpJobRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectJob = inspectJob
        };

        // Call the API.
        DlpJob response = dlp.CreateDlpJob(request);

        System.Console.WriteLine($"Job created successfully. Job name: {response.Name}");

        return response;
    }
}

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectBigQuerySendToScc configures the inspection job that instructs Cloud DLP to scan data stored in BigQuery,
// and also instructs Cloud DLP to save its scan results to Security Command Center.
func inspectBigQuerySendToScc(w io.Writer, projectID, bigQueryDatasetId, bigQueryTableId string) error {
	// projectID := "my-project-id"
	// bigQueryDatasetId := "your-project-bigquery-dataset"
	// bigQueryTableId := "your-project-bigquery_table"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the BigQuery table to be inspected.
	tableReference := &dlppb.BigQueryTable{
		ProjectId: projectID,
		DatasetId: bigQueryDatasetId,
		TableId:   bigQueryTableId,
	}

	bigQueryOptions := &dlppb.BigQueryOptions{
		TableReference: tableReference,
	}

	// Specify the type of storage that you have configured.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_BigQueryOptions{
			BigQueryOptions: bigQueryOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types.
	infoTypes := []*dlppb.InfoType{
		{Name: "EMAIL_ADDRESS"},
		{Name: "PERSON_NAME"},
		{Name: "LOCATION"},
		{Name: "PHONE_NUMBER"},
	}

	// The minimum likelihood required before returning a match.
	minLikelihood := dlppb.Likelihood_UNLIKELY

	// The maximum number of findings to report (0 = server maximum).
	findingLimits := &dlppb.InspectConfig_FindingLimits{
		MaxFindingsPerItem: 100,
	}

	// Specify how the content should be inspected.
	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:     infoTypes,
		MinLikelihood: minLikelihood,
		Limits:        findingLimits,
		IncludeQuote:  true,
	}

	// Specify the action that is triggered when the job completes.
	action := &dlppb.Action{
		Action: &dlppb.Action_PublishSummaryToCscc_{
			PublishSummaryToCscc: &dlppb.Action_PublishSummaryToCscc{},
		},
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Send the request.
	resp, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the result
	fmt.Fprintf(w, "Job created successfully: %v", resp.Name)
	return nil
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectBigQuerySendToScc {

  private static final int TIMEOUT_MINUTES = 15;

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The BigQuery dataset id to be used and the reference table name to be inspected.
    String bigQueryDatasetId = "your-project-bigquery-dataset";
    String bigQueryTableId = "your-project-bigquery_table";
    inspectBigQuerySendToScc(projectId, bigQueryDatasetId, bigQueryTableId);
  }

  // Inspects a BigQuery Table to send data to Security Command Center.
  public static void inspectBigQuerySendToScc(
      String projectId, String bigQueryDatasetId, String bigQueryTableId) throws Exception {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(bigQueryDatasetId)
              .setTableId(bigQueryTableId)
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder().setTableReference(tableReference).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // The minimum likelihood required before returning a match.
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob response = dlpServiceClient.createDlpJob(createDlpJobRequest);

      // Get the current time.
      long startTime = System.currentTimeMillis();

      // Check if the job state is DONE.
      while (response.getState() != DlpJob.JobState.DONE) {
        // Sleep for 30 second.
        Thread.sleep(30000);

        // Get the updated job status.
        response = dlpServiceClient.getDlpJob(response.getName());

        // Check if the timeout duration has exceeded.
        long elapsedTime = System.currentTimeMillis() - startTime;
        if (TimeUnit.MILLISECONDS.toMinutes(elapsedTime) >= TIMEOUT_MINUTES) {
          System.out.printf("Job did not complete within %d minutes.%n", TIMEOUT_MINUTES);
          break;
        }
      }
      // Print the results.
      System.out.println("Job status: " + response.getState());
      System.out.println("Job name: " + response.getName());
      InspectDataSourceDetails.Result result = response.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under.
// const projectId = "your-project-id";

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

async function inspectBigQuerySendToScc() {
  // Specify the storage configuration object with big query table.
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
    },
  };

  // Specify the type of info the inspection will look for.
  const infoTypes = [
    {name: 'EMAIL_ADDRESS'},
    {name: 'PERSON_NAME'},
    {name: 'LOCATION'},
    {name: 'PHONE_NUMBER'},
  ];

  // Construct inspect configuration.
  const inspectConfig = {
    infoTypes: infoTypes,
    includeQuote: true,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.UNLIKELY,
    limits: {
      maxFindingsPerItem: 100,
    },
  };

  // Specify the action that is triggered when the job completes.
  const action = {
    publishSummaryToCscc: {
      enable: true,
    },
  };

  // Configure the inspection job we want the service to perform.
  const inspectJobConfig = {
    inspectConfig: inspectConfig,
    storageConfig: storageItem,
    actions: [action],
  };

  // Construct the job creation request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: inspectJobConfig,
  };

  // Send the job creation request and process the response.
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Waiting for a maximum of 15 minutes for the job to get complete.
  let job;
  let numOfAttempts = 30;
  while (numOfAttempts > 0) {
    // Fetch DLP Job status
    [job] = await dlp.getDlpJob({name: jobName});

    // Check if the job has completed.
    if (job.state === 'DONE') {
      break;
    }
    if (job.state === 'FAILED') {
      console.log('Job Failed, Please check the configuration.');
      return;
    }
    // Sleep for a short duration before checking the job status again.
    await new Promise(resolve => {
      setTimeout(() => resolve(), 30000);
    });
    numOfAttempts -= 1;
  }

  // Print out the results.
  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectBigQuerySendToScc();

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\DlpJob\JobState;

/**
 * (BIGQUERY) Send Cloud DLP scan results to Security Command Center.
 * Using Cloud Data Loss Prevention to scan specific Google Cloud resources and send data to Security Command Center.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $projectId         The ID of the Project.
 * @param string $datasetId         The ID of the BigQuery Dataset.
 * @param string $tableId           The ID of the BigQuery Table to be inspected.
 */
function inspect_bigquery_send_to_scc(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $projectId,
    string $datasetId,
    string $tableId
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Construct the items to be inspected.
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($projectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);
    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions(($bigQueryOptions));

    // Specify the type of info the inspection will look for.
    $infoTypes = [
        (new InfoType())->setName('EMAIL_ADDRESS'),
        (new InfoType())->setName('PERSON_NAME'),
        (new InfoType())->setName('LOCATION'),
        (new InfoType())->setName('PHONE_NUMBER')
    ];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood(likelihood::UNLIKELY)
        ->setLimits((new FindingLimits())
            ->setMaxFindingsPerRequest(100))
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Configure the inspection job we want the service to perform.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJobConfig
    ]);

    $numOfAttempts = 10;
    do {
        printf('Waiting for job to complete' . PHP_EOL);
        sleep(10);
        $job = $dlp->getDlpJob($job->getName());
        if ($job->getState() == JobState::DONE) {
            break;
        }
        $numOfAttempts--;
    } while ($numOfAttempts > 0);

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import time
from typing import List

import google.cloud.dlp


def inspect_bigquery_send_to_scc(
    project: str,
    info_types: List[str],
    max_findings: int = 100,
) -> None:
    """
    Uses the Data Loss Prevention API to inspect public bigquery dataset
    and send the results to Google Security Command Center.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        info_types: A list of strings representing infoTypes to inspect for.
            A full list of infoType categories can be fetched from the API.
        max_findings: The maximum number of findings to report; 0 = no maximum
    """
    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a Cloud Storage Options dictionary with the big query options.
    storage_config = {
        "big_query_options": {
            "table_reference": {
                "project_id": "bigquery-public-data",
                "dataset_id": "usa_names",
                "table_id": "usa_1910_current",
            }
        }
    }

    # Tell the API where to send a notification when the job is complete.
    actions = [{"publish_summary_to_cscc": {}}]

    # Construct the job definition.
    job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.create_dlp_job(
        request={
            "parent": parent,
            "inspect_job": job,
        }
    )
    print(f"Inspection Job started : {response.name}")

    job_name = response.name

    # Waiting for a maximum of 15 minutes for the job to get complete.
    no_of_attempts = 30
    while no_of_attempts > 0:
        # Get the DLP job status.
        job = dlp.get_dlp_job(request={"name": job_name})
        # Check if the job has completed.
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.DONE:
            break
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.FAILED:
            print("Job Failed, Please check the configuration.")
            return

        # Sleep for a short duration before checking the job status again.
        time.sleep(30)
        no_of_attempts -= 1

    # Print out the results.
    print(f"Job name: {job.name}")
    result = job.inspect_details.result
    if result.info_type_stats:
        for stats in result.info_type_stats:
            print(f"Info type: {stats.info_type.name}")
            print(f"Count: {stats.count}")
    else:
        print("No findings.")

Exemples de code: inspecter un genre Datastore

Cet exemple montre comment utiliser l'API DLP pour créer une tâche d'inspection qui inspecte un type de Datastore et envoie les résultats à Security Command Center.

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using System.Collections.Generic;
using System.Linq;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectDataStoreJobWithSCCIntegration
{
    public static DlpJob SendInspectDatastoreToSCC(
        string projectId,
        string kindName,
        string namespaceId,
        Likelihood minLikelihood = Likelihood.Unlikely,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Specify the Datastore entity to be inspected and construct the storage
        // config. The NamespaceId is to be used for partition entity and the datastore kind defining
        // a data set.
        var storageConfig = new StorageConfig
        {
            DatastoreOptions = new DatastoreOptions
            {
                Kind = new KindExpression { Name = kindName },
                PartitionId = new PartitionId
                {
                    NamespaceId = namespaceId,
                    ProjectId = projectId
                }
            }
        };

        // Specify the type of info to be inspected and construct the inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[]
                {
                    new InfoType { Name = "EMAIL_ADDRESS" },
                    new InfoType { Name = "PERSON_NAME" },
                    new InfoType { Name = "LOCATION" },
                    new InfoType { Name = "PHONE_NUMBER" }
                }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood,
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = 100
            }
        };

        // Construct the SCC action which will be performed after inspecting the datastore.
        var actions = new Action[]
        {
            new Action
            {
                PublishSummaryToCscc = new Action.Types.PublishSummaryToCscc()
            }
        };

        // Construct the inspect job config using storage config, inspect config and action.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Construct the request.
        var request = new CreateDlpJobRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectJob = inspectJob
        };

        // Call the API.
        DlpJob response = dlp.CreateDlpJob(request);

        return response;
    }
}

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectDataStoreSendToScc inspects sensitive data in a Datastore
// and sends the results to Google Cloud Security Command Center (SCC).
func inspectDataStoreSendToScc(w io.Writer, projectID, datastoreNamespace, datastoreKind string) error {
	// projectID := "my-project-id"
	// datastoreNamespace := "your-datastore-namespace"
	// datastoreKind := "your-datastore-kind"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the Datastore entity to be inspected.
	partitionId := &dlppb.PartitionId{
		ProjectId:   projectID,
		NamespaceId: datastoreNamespace,
	}

	// kindExpr represents an expression specifying a kind or range of kinds for data inspection in DLP.
	kindExpression := &dlppb.KindExpression{
		Name: datastoreKind,
	}

	// Specify datastoreOptions so that It holds the configuration options for inspecting data in
	// Google Cloud Datastore.
	datastoreOptions := &dlppb.DatastoreOptions{
		PartitionId: partitionId,
		Kind:        kindExpression,
	}

	// Specify the storageConfig to represents the configuration settings for inspecting data
	// in different storage types, such as BigQuery and Cloud Storage.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_DatastoreOptions{
			DatastoreOptions: datastoreOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "EMAIL_ADDRESS"},
		{Name: "PERSON_NAME"},
		{Name: "LOCATION"},
		{Name: "PHONE_NUMBER"},
	}

	// The minimum likelihood required before returning a match.
	minLikelihood := dlppb.Likelihood_UNLIKELY

	// The maximum number of findings to report (0 = server maximum).
	findingLimits := &dlppb.InspectConfig_FindingLimits{
		MaxFindingsPerItem: 100,
	}

	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:     infoTypes,
		MinLikelihood: minLikelihood,
		Limits:        findingLimits,
		IncludeQuote:  true,
	}

	// Specify the action that is triggered when the job completes.
	action := &dlppb.Action{
		Action: &dlppb.Action_PublishSummaryToCscc_{
			PublishSummaryToCscc: &dlppb.Action_PublishSummaryToCscc{},
		},
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Send the request.
	resp, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the result
	fmt.Fprintf(w, "Job created successfully: %v", resp.Name)
	return nil
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DatastoreOptions;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.KindExpression;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PartitionId;
import com.google.privacy.dlp.v2.StorageConfig;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectDatastoreSendToScc {

  private static final int TIMEOUT_MINUTES = 15;

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The namespace specifier to be used for the partition entity.
    String datastoreNamespace = "your-datastore-namespace";
    // The datastore kind defining a data set.
    String datastoreKind = "your-datastore-kind";
    inspectDatastoreSendToScc(projectId, datastoreNamespace, datastoreKind);
  }

  // Creates a DLP Job to scan the sample data stored in a DataStore table and save its scan results
  // to Security Command Center.
  public static void inspectDatastoreSendToScc(
      String projectId, String datastoreNamespace, String datastoreKind)
      throws IOException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the Datastore entity to be inspected.
      PartitionId partitionId =
          PartitionId.newBuilder()
              .setProjectId(projectId)
              .setNamespaceId(datastoreNamespace)
              .build();

      KindExpression kindExpression = KindExpression.newBuilder().setName(datastoreKind).build();

      DatastoreOptions datastoreOptions =
          DatastoreOptions.newBuilder().setKind(kindExpression).setPartitionId(partitionId).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setDatastoreOptions(datastoreOptions).build();

      // Specify the type of info the inspection will look for.
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // The minimum likelihood required before returning a match.
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob response = dlpServiceClient.createDlpJob(createDlpJobRequest);
      // Get the current time.
      long startTime = System.currentTimeMillis();

      // Check if the job state is DONE.
      while (response.getState() != DlpJob.JobState.DONE) {
        // Sleep for 30 second.
        Thread.sleep(30000);

        // Get the updated job status.
        response = dlpServiceClient.getDlpJob(response.getName());

        // Check if the timeout duration has exceeded.
        long elapsedTime = System.currentTimeMillis() - startTime;
        if (TimeUnit.MILLISECONDS.toMinutes(elapsedTime) >= TIMEOUT_MINUTES) {
          System.out.printf("Job did not complete within %d minutes.%n", TIMEOUT_MINUTES);
          break;
        }
      }
      // Print the results.
      System.out.println("Job status: " + response.getState());
      System.out.println("Job name: " + response.getName());
      InspectDataSourceDetails.Result result = response.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under.
// const projectId = "your-project-id";

// Datastore namespace
// const datastoreNamespace = 'datastore-namespace';

// Datastore kind
// const datastoreKind = 'datastore-kind';

async function inspectDatastoreSendToScc() {
  // Specify the storage configuration object with datastore.
  const storageConfig = {
    datastoreOptions: {
      kind: {
        name: datastoreKind,
      },
      partitionId: {
        projectId: projectId,
        namespaceId: datastoreNamespace,
      },
    },
  };

  // Construct the info types to look for in the datastore.
  const infoTypes = [
    {name: 'EMAIL_ADDRESS'},
    {name: 'PERSON_NAME'},
    {name: 'LOCATION'},
    {name: 'PHONE_NUMBER'},
  ];

  // Construct the inspection configuration.
  const inspectConfig = {
    infoTypes: infoTypes,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.UNLIKELY,
    limits: {
      maxFindingsPerItem: 100,
    },
    includeQuote: true,
  };

  // Specify the action that is triggered when the job completes
  const action = {
    publishSummaryToCscc: {enable: true},
  };

  // Configure the inspection job we want the service to perform.
  const inspectJobConfig = {
    inspectConfig: inspectConfig,
    storageConfig: storageConfig,
    actions: [action],
  };

  // Construct the job creation request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: inspectJobConfig,
  };

  // Send the job creation request and process the response.
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Waiting for a maximum of 15 minutes for the job to get complete.
  let job;
  let numOfAttempts = 30;
  while (numOfAttempts > 0) {
    // Fetch DLP Job status
    [job] = await dlp.getDlpJob({name: jobName});

    // Check if the job has completed.
    if (job.state === 'DONE') {
      break;
    }
    if (job.state === 'FAILED') {
      console.log('Job Failed, Please check the configuration.');
      return;
    }
    // Sleep for a short duration before checking the job status again.
    await new Promise(resolve => {
      setTimeout(() => resolve(), 30000);
    });
    numOfAttempts -= 1;
  }

  // Print out the results.
  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectDatastoreSendToScc();

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\DatastoreOptions;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\KindExpression;
use Google\Cloud\Dlp\V2\PartitionId;
use Google\Cloud\Dlp\V2\DlpJob\JobState;

/**
 * (DATASTORE) Send Cloud DLP scan results to Security Command Center.
 * Using Cloud Data Loss Prevention to scan specific Google Cloud resources and send data to Security Command Center.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $kindName          Datastore kind name to be inspected.
 * @param string $namespaceId       Namespace Id to be inspected.
 */
function inspect_datastore_send_to_scc(
    string $callingProjectId,
    string $kindName,
    string $namespaceId
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Construct the items to be inspected.
    $datastoreOptions = (new DatastoreOptions())
        ->setKind((new KindExpression())
            ->setName($kindName))
        ->setPartitionId((new PartitionId())
            ->setNamespaceId($namespaceId)
            ->setProjectId($callingProjectId));

    $storageConfig = (new StorageConfig())
        ->setDatastoreOptions(($datastoreOptions));

    // Specify the type of info the inspection will look for.
    $infoTypes = [
        (new InfoType())->setName('EMAIL_ADDRESS'),
        (new InfoType())->setName('PERSON_NAME'),
        (new InfoType())->setName('LOCATION'),
        (new InfoType())->setName('PHONE_NUMBER')
    ];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood(likelihood::UNLIKELY)
        ->setLimits((new FindingLimits())
            ->setMaxFindingsPerRequest(100))
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Construct inspect job config to run.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJobConfig
    ]);

    $numOfAttempts = 10;
    do {
        printf('Waiting for job to complete' . PHP_EOL);
        sleep(10);
        $job = $dlp->getDlpJob($job->getName());
        if ($job->getState() == JobState::DONE) {
            break;
        }
        $numOfAttempts--;
    } while ($numOfAttempts > 0);

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez la page Bibliothèques clientes de la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import time
from typing import List

import google.cloud.dlp


def inspect_datastore_send_to_scc(
    project: str,
    datastore_project: str,
    kind: str,
    info_types: List[str],
    namespace_id: str = None,
    max_findings: int = 100,
) -> None:
    """
    Uses the Data Loss Prevention API to inspect Datastore data and
    send the results to Google Security Command Center.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        datastore_project: The Google Cloud project id of the target Datastore.
        kind: The kind of the Datastore entity to inspect, e.g. 'Person'.
        info_types: A list of strings representing infoTypes to inspect for.
            A full list of infoType categories can be fetched from the API.
        namespace_id: The namespace of the Datastore document, if applicable.
        max_findings: The maximum number of findings to report; 0 = no maximum

    """
    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a cloud_storage_options dictionary with datastore options.
    storage_config = {
        "datastore_options": {
            "partition_id": {
                "project_id": datastore_project,
                "namespace_id": namespace_id,
            },
            "kind": {"name": kind},
        }
    }

    # Tell the API where to send a notification when the job is complete.
    actions = [{"publish_summary_to_cscc": {}}]

    # Construct the job definition.
    job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API
    response = dlp.create_dlp_job(
        request={
            "parent": parent,
            "inspect_job": job,
        }
    )
    print(f"Inspection Job started : {response.name}")

    job_name = response.name

    # Waiting for a maximum of 15 minutes for the job to get complete.
    no_of_attempts = 30
    while no_of_attempts > 0:
        # Get the DLP job status.
        job = dlp.get_dlp_job(request={"name": job_name})
        # Check if the job has completed.
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.DONE:
            break
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.FAILED:
            print("Job Failed, Please check the configuration.")
            return

        # Sleep for a short duration before checking the job status again.
        time.sleep(30)
        no_of_attempts -= 1

    # Print out the results.
    print(f"Job name: {job.name}")
    result = job.inspect_details.result
    if result.info_type_stats:
        for stats in result.info_type_stats:
            print(f"Info type: {stats.info_type.name}")
            print(f"Count: {stats.count}")
    else:
        print("No findings.")

Afficher les résultats de l'analyse de protection des données sensibles dans Security Command Center

Étant donné que vous avez demandé à la protection des données sensibles d'envoyer les résultats de sa tâche d'inspection à Security Command Center, vous pouvez désormais afficher les résultats de la tâche d'inspection dans Security Command Center:

  1. Dans la console Google Cloud , accédez à la page Résultats de Security Command Center.

    Accéder

  2. Sélectionnez l'organisation pour laquelle vous avez activé Security Command Center.
  3. Dans le champ Éditeur de requête, saisissez ce qui suit pour rechercher les résultats de la protection des données sensibles.

    state="ACTIVE"
    AND NOT mute="MUTED"
    AND (parent_display_name="Sensitive Data Protection" OR parent_display_name="Cloud Data Loss Prevention")
    

    Pour en savoir plus sur l'éditeur de requêtes, consultez Modifier une requête de résultats dans la consoleGoogle Cloud .

    Si des résultats ont été envoyés par Sensitive Data Protection, ils s'affichent dans la liste des résultats. La liste inclut tous les résultats de Sensitive Data Protection, qui peuvent inclure les résultats des tâches d'inspection et des opérations de découverte (profilage des données).

Les instructions fournies dans ce guide n'activent que certains détecteurs intégrés de la protection des données sensibles.

Effectuer un nettoyage

Pour éviter que les ressources utilisées dans cet article ne soient facturées sur votre compte Google Cloud , procédez comme suit:

Supprimer le projet

Le moyen le plus simple d'empêcher la facturation est de supprimer le projet que vous avez créé en suivant les instructions du présent article.

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Si vous supprimez votre projet à l'aide de cette méthode, la tâche de protection des données sensibles et le bucket Cloud Storage que vous avez créés sont également supprimés. Il n'est pas nécessaire de suivre les instructions des sections suivantes.

Supprimer la tâche de protection des données sensibles

Si vous avez analysé vos propres données, vous devez supprimer uniquement la tâche d'inspection que vous avez créée:

  1. Pour accéder à APIs Explorer sur la page de référence de la méthode dlpJobs.delete, cliquez sur le bouton suivant :

    Ouvrir API Explorer

  2. Dans la zone name (nom), indiquez au format suivant le nom de la tâche figurant dans la réponse JSON obtenue pour la requête d'analyse :
    projects/PROJECT_ID/dlpJobs/JOB_ID
    L'ID de la tâche se présente sous la forme i-1234567890123456789.

Si vous avez créé des tâches d'inspection supplémentaires ou si vous souhaitez vous assurer que la tâche a bien été supprimée, vous pouvez répertorier toutes les tâches existantes:

  1. Pour accéder à APIs Explorer sur la page de référence de la méthode dlpJobs.list, cliquez sur le bouton suivant :

    Ouvrir API Explorer

  2. Dans la zone parent, saisissez l'identifiant du projet comme suit :
    projects/PROJECT_ID
  3. Cliquez sur Exécuter.

Si aucune tâche n'est répertoriée dans la réponse, cela signifie que vous avez supprimé toutes les tâches. Si des tâches sont répertoriées dans la réponse, répétez la procédure de suppression pour ces tâches.

Supprimer le bucket Cloud Storage

Si vous avez créé un bucket Cloud Storage pour stocker des exemples de données, supprimez-le en procédant comme suit :

  1. Ouvrez le navigateur Cloud Storage.

    Ouvrir Cloud Storage

  2. Dans le navigateur Cloud Storage, cochez la case située à côté du nom du bucket que vous avez créé, puis cliquez sur Supprimer.

Étape suivante