- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
Evals(api_client_: google.genai._api_client.BaseApiClient)API documentation for Evals class.
Methods
batch_evaluate
batch_evaluate(
*,
dataset: typing.Union[
vertexai._genai.types.EvaluationDataset,
vertexai._genai.types.EvaluationDatasetDict,
],
metrics: list[
typing.Union[vertexai._genai.types.Metric, vertexai._genai.types.MetricDict]
],
dest: str,
config: typing.Optional[
typing.Union[
vertexai._genai.types.EvaluateDatasetConfig,
vertexai._genai.types.EvaluateDatasetConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluateDatasetOperationEvaluates a dataset based on a set of given metrics.
create_evaluation_item
create_evaluation_item(
*,
evaluation_item_type: vertexai._genai.types.EvaluationItemType,
gcs_uri: str,
display_name: typing.Optional[str] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.CreateEvaluationItemConfig,
vertexai._genai.types.CreateEvaluationItemConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationItemCreates an EvaluationItem.
create_evaluation_run
create_evaluation_run(
*,
name: str,
dataset: typing.Union[
vertexai._genai.types.EvaluationRunDataSource,
vertexai._genai.types.EvaluationDataset,
],
dest: str,
display_name: typing.Optional[str] = None,
metrics: typing.Optional[
list[
typing.Union[
vertexai._genai.types.EvaluationRunMetric,
vertexai._genai.types.EvaluationRunMetricDict,
]
]
] = None,
agent_info: typing.Optional[vertexai._genai.types.AgentInfo] = None,
labels: typing.Optional[dict[str, str]] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.CreateEvaluationRunConfig,
vertexai._genai.types.CreateEvaluationRunConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationRunCreates an EvaluationRun.
create_evaluation_set
create_evaluation_set(
*,
evaluation_items: list[str],
display_name: typing.Optional[str] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.CreateEvaluationSetConfig,
vertexai._genai.types.CreateEvaluationSetConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationSetCreates an EvaluationSet.
evaluate
evaluate(
*,
dataset: typing.Union[
vertexai._genai.types.EvaluationDataset,
vertexai._genai.types.EvaluationDatasetDict,
list[
typing.Union[
vertexai._genai.types.EvaluationDataset,
vertexai._genai.types.EvaluationDatasetDict,
]
],
],
metrics: typing.Optional[
list[
typing.Union[vertexai._genai.types.Metric, vertexai._genai.types.MetricDict]
]
] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.EvaluateMethodConfig,
vertexai._genai.types.EvaluateMethodConfigDict,
]
] = None,
**kwargs
) -> vertexai._genai.types.EvaluationResultEvaluates candidate responses in the provided dataset(s) using the specified metrics.
evaluate_instances
evaluate_instances(
*, metric_config: vertexai._genai.types._EvaluateInstancesRequestParameters
) -> vertexai._genai.types.EvaluateInstancesResponseEvaluates an instance of a model.
generate_rubrics
generate_rubrics(
*,
src: typing.Union[str, pd.DataFrame, vertexai._genai.types.EvaluationDataset],
rubric_group_name: str,
prompt_template: typing.Optional[str] = None,
generator_model_config: typing.Optional[genai_types.AutoraterConfigOrDict] = None,
rubric_content_type: typing.Optional[types.RubricContentType] = None,
rubric_type_ontology: typing.Optional[list[str]] = None,
predefined_spec_name: typing.Optional[
typing.Union[str, types.PrebuiltMetric]
] = None,
metric_spec_parameters: typing.Optional[dict[str, typing.Any]] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.RubricGenerationConfig,
vertexai._genai.types.RubricGenerationConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationDatasetGenerates rubrics for each prompt in the source and adds them as a new column structured as a dictionary.
You can generate rubrics by providing either:
- A
predefined_spec_nameto use a Vertex AI backend recipe. - A
prompt_templatealong with other configuration parameters (generator_model_config,rubric_content_type,rubric_type_ontology) for custom rubric generation.
These two modes are mutually exclusive.
get_evaluation_item
get_evaluation_item(
*,
name: str,
config: typing.Optional[
typing.Union[
vertexai._genai.types.GetEvaluationItemConfig,
vertexai._genai.types.GetEvaluationItemConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationItemRetrieves an EvaluationItem from the resource name.
get_evaluation_run
get_evaluation_run(
*,
name: str,
include_evaluation_items: bool = False,
config: typing.Optional[
typing.Union[
vertexai._genai.types.GetEvaluationRunConfig,
vertexai._genai.types.GetEvaluationRunConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationRunRetrieves an EvaluationRun from the resource name.
get_evaluation_set
get_evaluation_set(
*,
name: str,
config: typing.Optional[
typing.Union[
vertexai._genai.types.GetEvaluationSetConfig,
vertexai._genai.types.GetEvaluationSetConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationSetRetrieves an EvaluationSet from the resource name.
run
run() -> vertexai._genai.types.EvaluateInstancesResponseEvaluates an instance of a model.
This should eventually call _evaluate_instances()
run_inference
run_inference(
*,
src: typing.Union[
str, pandas.core.frame.DataFrame, vertexai._genai.types.EvaluationDataset
],
model: typing.Optional[
typing.Union[str, typing.Callable[[typing.Any], typing.Any]]
] = None,
agent: typing.Optional[typing.Union[str, vertexai._genai.types.AgentEngine]] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.EvalRunInferenceConfig,
vertexai._genai.types.EvalRunInferenceConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationDatasetRuns inference on a dataset for evaluation.