Summary of entries of Methods for llama-index-cloud-sql-pg.
llama_index_cloud_sql_pg.engine._get_iam_principal_email
_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str
Get email address associated with current authenticated IAM principal.
See more: llama_index_cloud_sql_pg.engine._get_iam_principal_email
llama_index_cloud_sql_pg.chat_store.PostgresChatStore
PostgresChatStore(
key: object, engine: PostgresEngine, chat_store: AsyncPostgresChatStore
)
PostgresChatStore constructor.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.add_message
add_message(
key: str, message: llama_index.core.base.llms.types.ChatMessage
) -> None
Synchronously adds a new chat message to the specified key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.add_message
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.adelete_last_message
adelete_last_message(
key: str,
) -> typing.Optional[llama_index.core.base.llms.types.ChatMessage]
Asynchronously deletes the last chat message associated with a given key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.adelete_last_message
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.adelete_message
adelete_message(
key: str, idx: int
) -> typing.Optional[llama_index.core.base.llms.types.ChatMessage]
Asynchronously deletes a specific chat message by index from the messages associated with a given key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.adelete_message
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.adelete_messages
adelete_messages(
key: str,
) -> typing.Optional[typing.List[llama_index.core.base.llms.types.ChatMessage]]
Asynchronously deletes the chat messages associated with a specific key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.adelete_messages
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.aget_keys
aget_keys() -> typing.List[str]
Asynchronously retrieves a list of all keys.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.aget_keys
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.aget_messages
aget_messages(
key: str,
) -> typing.List[llama_index.core.base.llms.types.ChatMessage]
Asynchronously retrieves the chat messages associated with a specific key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.aget_messages
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.aset_messages
aset_messages(
key: str, messages: typing.List[llama_index.core.base.llms.types.ChatMessage]
) -> None
Asynchronously sets the chat messages for a specific key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.aset_messages
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.async_add_message
async_add_message(
key: str, message: llama_index.core.base.llms.types.ChatMessage
) -> None
Asynchronously adds a new chat message to the specified key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.async_add_message
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.class_name
class_name() -> str
Get class name.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.class_name
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.create
create(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
) -> llama_index_cloud_sql_pg.chat_store.PostgresChatStore
Create a new PostgresChatStore instance.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.create
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.create_sync
create_sync(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
) -> llama_index_cloud_sql_pg.chat_store.PostgresChatStore
Create a new PostgresChatStore sync instance.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.create_sync
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.delete_last_message
delete_last_message(
key: str,
) -> typing.Optional[llama_index.core.base.llms.types.ChatMessage]
Synchronously deletes the last chat message associated with a given key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.delete_last_message
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.delete_message
delete_message(
key: str, idx: int
) -> typing.Optional[llama_index.core.base.llms.types.ChatMessage]
Synchronously deletes a specific chat message by index from the messages associated with a given key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.delete_message
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.delete_messages
delete_messages(
key: str,
) -> typing.Optional[typing.List[llama_index.core.base.llms.types.ChatMessage]]
Synchronously deletes the chat messages associated with a specific key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.delete_messages
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.get_keys
get_keys() -> typing.List[str]
Synchronously retrieves a list of all keys.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.get_keys
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.get_messages
get_messages(key: str) -> typing.List[llama_index.core.base.llms.types.ChatMessage]
Synchronously retrieves the chat messages associated with a specific key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.get_messages
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.model_post_init
model_post_init(context: Any, /) -> None
This function is meant to behave like a BaseModel method to initialise private attributes.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.model_post_init
llama_index_cloud_sql_pg.chat_store.PostgresChatStore.set_messages
set_messages(
key: str, messages: typing.List[llama_index.core.base.llms.types.ChatMessage]
) -> None
Synchronously sets the chat messages for a specific key.
See more: llama_index_cloud_sql_pg.chat_store.PostgresChatStore.set_messages
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore
PostgresDocumentStore(
key: object,
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
document_store: llama_index_cloud_sql_pg.async_document_store.AsyncPostgresDocumentStore,
)
"PostgresDocumentStore constructor.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.add_documents
add_documents(
docs: typing.Sequence[llama_index.core.schema.BaseNode],
allow_update: bool = True,
batch_size: int = 1,
store_text: bool = True,
) -> None
Adds a document to the store.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.add_documents
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.adelete_document
adelete_document(doc_id: str, raise_error: bool = True) -> None
Delete a document from the store.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.adelete_document
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.adelete_ref_doc
adelete_ref_doc(ref_doc_id: str, raise_error: bool = True) -> None
Delete a ref_doc and all it's associated nodes.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.adelete_ref_doc
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.adocument_exists
adocument_exists(doc_id: str) -> bool
Check if document exists.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.adocument_exists
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_all_document_hashes
aget_all_document_hashes() -> dict[str, str]
Get the stored hash for all documents.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_all_document_hashes
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_all_ref_doc_info
aget_all_ref_doc_info() -> (
typing.Optional[dict[str, llama_index.core.storage.docstore.types.RefDocInfo]]
)
Get a mapping of ref_doc_id -> RefDocInfo for all ingested documents.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_all_ref_doc_info
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_document
aget_document(
doc_id: str, raise_error: bool = True
) -> typing.Optional[llama_index.core.schema.BaseNode]
Retrieves a document from the table by its doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_document
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_document_hash
aget_document_hash(doc_id: str) -> typing.Optional[str]
Get the stored hash for a document, if it exists.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_document_hash
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_ref_doc_info
aget_ref_doc_info(
ref_doc_id: str,
) -> typing.Optional[llama_index.core.storage.docstore.types.RefDocInfo]
Get the RefDocInfo for a given ref_doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aget_ref_doc_info
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aref_doc_exists
aref_doc_exists(ref_doc_id: str) -> bool
Check if a ref_doc_id has been ingested.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aref_doc_exists
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aset_document_hash
aset_document_hash(doc_id: str, doc_hash: str) -> None
Set the hash for a given doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aset_document_hash
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aset_document_hashes
aset_document_hashes(doc_hashes: dict[str, str]) -> None
Set the hash for a given doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.aset_document_hashes
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.async_add_documents
async_add_documents(
docs: typing.Sequence[llama_index.core.schema.BaseNode],
allow_update: bool = True,
batch_size: int = 1,
store_text: bool = True,
) -> None
Adds a document to the store.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.async_add_documents
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.create
create(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
batch_size: int = 1,
) -> llama_index_cloud_sql_pg.document_store.PostgresDocumentStore
Create a new PostgresDocumentStore instance.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.create
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.create_sync
create_sync(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
batch_size: int = 1,
) -> llama_index_cloud_sql_pg.document_store.PostgresDocumentStore
Create a new PostgresDocumentStore sync instance.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.create_sync
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.delete_document
delete_document(doc_id: str, raise_error: bool = True) -> None
Delete a document from the store.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.delete_document
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.delete_ref_doc
delete_ref_doc(ref_doc_id: str, raise_error: bool = True) -> None
Delete a ref_doc and all it's associated nodes.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.delete_ref_doc
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.document_exists
document_exists(doc_id: str) -> bool
Check if document exists.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.document_exists
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_all_document_hashes
get_all_document_hashes() -> dict[str, str]
Get the stored hash for all documents.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_all_document_hashes
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_all_ref_doc_info
get_all_ref_doc_info() -> (
typing.Optional[dict[str, llama_index.core.storage.docstore.types.RefDocInfo]]
)
Get a mapping of ref_doc_id -> RefDocInfo for all ingested documents.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_all_ref_doc_info
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_document
get_document(
doc_id: str, raise_error: bool = True
) -> typing.Optional[llama_index.core.schema.BaseNode]
Retrieves a document from the table by its doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_document
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_document_hash
get_document_hash(doc_id: str) -> typing.Optional[str]
Get the stored hash for a document, if it exists.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_document_hash
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_ref_doc_info
get_ref_doc_info(
ref_doc_id: str,
) -> typing.Optional[llama_index.core.storage.docstore.types.RefDocInfo]
Get the RefDocInfo for a given ref_doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.get_ref_doc_info
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.ref_doc_exists
ref_doc_exists(ref_doc_id: str) -> bool
Check if a ref_doc_id has been ingested.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.ref_doc_exists
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.set_document_hash
set_document_hash(doc_id: str, doc_hash: str) -> None
Set the hash for a given doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.set_document_hash
llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.set_document_hashes
set_document_hashes(doc_hashes: dict[str, str]) -> None
Set the hash for a given doc_id.
See more: llama_index_cloud_sql_pg.document_store.PostgresDocumentStore.set_document_hashes
llama_index_cloud_sql_pg.engine.Column.__post_init__
__post_init__()
Check if initialization parameters are valid.
llama_index_cloud_sql_pg.engine.PostgresEngine
PostgresEngine(
key: object,
pool: sqlalchemy.ext.asyncio.engine.AsyncEngine,
loop: typing.Optional[asyncio.events.AbstractEventLoop],
thread: typing.Optional[threading.Thread],
)
PostgresEngine constructor.
llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_chat_store_table
_ainit_chat_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table to save chat store.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_chat_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_doc_store_table
_ainit_doc_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create an table for the DocumentStore.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_doc_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_index_store_table
_ainit_index_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table to save Index metadata.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_index_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_vector_store_table
_ainit_vector_store_table(
table_name: str,
vector_size: int,
schema_name: str = "public",
id_column: typing.Union[str, llama_index_cloud_sql_pg.engine.Column] = "node_id",
text_column: str = "text",
embedding_column: str = "embedding",
metadata_json_column: str = "li_metadata",
metadata_columns: list[llama_index_cloud_sql_pg.engine.Column] = [],
ref_doc_id_column: str = "ref_doc_id",
node_column: str = "node_data",
stores_text: bool = True,
overwrite_existing: bool = False,
) -> None
Create a table for the VectorStore.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._ainit_vector_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
_aload_table_schema(
table_name: str, schema_name: str = "public"
) -> sqlalchemy.sql.schema.Table
Load table schema from an existing table in a PgSQL database, potentially from a specific database schema.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
llama_index_cloud_sql_pg.engine.PostgresEngine._create
_create(
project_id: str,
region: str,
instance: str,
database: str,
ip_type: typing.Union[str, google.cloud.sql.connector.enums.IPTypes],
user: typing.Optional[str] = None,
password: typing.Optional[str] = None,
loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
thread: typing.Optional[threading.Thread] = None,
quota_project: typing.Optional[str] = None,
iam_account_email: typing.Optional[str] = None,
) -> llama_index_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine instance.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._create
llama_index_cloud_sql_pg.engine.PostgresEngine._run_as_async
_run_as_async(
coro: typing.Awaitable[llama_index_cloud_sql_pg.engine.T],
) -> llama_index_cloud_sql_pg.engine.T
Run an async coroutine asynchronously.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._run_as_async
llama_index_cloud_sql_pg.engine.PostgresEngine._run_as_sync
_run_as_sync(
coro: typing.Awaitable[llama_index_cloud_sql_pg.engine.T],
) -> llama_index_cloud_sql_pg.engine.T
Run an async coroutine synchronously.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine._run_as_sync
llama_index_cloud_sql_pg.engine.PostgresEngine.afrom_instance
afrom_instance(
project_id: str,
region: str,
instance: str,
database: str,
user: typing.Optional[str] = None,
password: typing.Optional[str] = None,
ip_type: typing.Union[
str, google.cloud.sql.connector.enums.IPTypes
] = IPTypes.PUBLIC,
quota_project: typing.Optional[str] = None,
iam_account_email: typing.Optional[str] = None,
) -> llama_index_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine from a Postgres instance.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.afrom_instance
llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_chat_store_table
ainit_chat_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table to save chat store.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_chat_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_doc_store_table
ainit_doc_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table for the DocumentStore.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_doc_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_index_store_table
ainit_index_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table to save Index metadata.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_index_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_vector_store_table
ainit_vector_store_table(
table_name: str,
vector_size: int,
schema_name: str = "public",
id_column: typing.Union[str, llama_index_cloud_sql_pg.engine.Column] = "node_id",
text_column: str = "text",
embedding_column: str = "embedding",
metadata_json_column: str = "li_metadata",
metadata_columns: list[llama_index_cloud_sql_pg.engine.Column] = [],
ref_doc_id_column: str = "ref_doc_id",
node_column: str = "node_data",
stores_text: bool = True,
overwrite_existing: bool = False,
) -> None
Create a table for the VectorStore.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.ainit_vector_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine.close
close() -> None
Dispose of connection pool.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.close
llama_index_cloud_sql_pg.engine.PostgresEngine.from_engine
from_engine(
engine: sqlalchemy.ext.asyncio.engine.AsyncEngine,
loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
) -> llama_index_cloud_sql_pg.engine.PostgresEngine
Create an PostgresEngine instance from an AsyncEngine.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.from_engine
llama_index_cloud_sql_pg.engine.PostgresEngine.from_engine_args
from_engine_args(
url: typing.Union[str, sqlalchemy.engine.url.URL], **kwargs: typing.Any
) -> llama_index_cloud_sql_pg.engine.PostgresEngine
Create an PostgresEngine instance from arguments.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.from_engine_args
llama_index_cloud_sql_pg.engine.PostgresEngine.from_instance
from_instance(
project_id: str,
region: str,
instance: str,
database: str,
user: typing.Optional[str] = None,
password: typing.Optional[str] = None,
ip_type: typing.Union[
str, google.cloud.sql.connector.enums.IPTypes
] = IPTypes.PUBLIC,
quota_project: typing.Optional[str] = None,
iam_account_email: typing.Optional[str] = None,
) -> llama_index_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine from a Postgres instance.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.from_instance
llama_index_cloud_sql_pg.engine.PostgresEngine.init_chat_store_table
init_chat_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table to save chat store.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.init_chat_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine.init_doc_store_table
init_doc_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table for the DocumentStore.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.init_doc_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine.init_index_store_table
init_index_store_table(
table_name: str, schema_name: str = "public", overwrite_existing: bool = False
) -> None
Create a table to save Index metadata.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.init_index_store_table
llama_index_cloud_sql_pg.engine.PostgresEngine.init_vector_store_table
init_vector_store_table(
table_name: str,
vector_size: int,
schema_name: str = "public",
id_column: typing.Union[str, llama_index_cloud_sql_pg.engine.Column] = "node_id",
text_column: str = "text",
embedding_column: str = "embedding",
metadata_json_column: str = "li_metadata",
metadata_columns: list[llama_index_cloud_sql_pg.engine.Column] = [],
ref_doc_id_column: str = "ref_doc_id",
node_column: str = "node_data",
stores_text: bool = True,
overwrite_existing: bool = False,
) -> None
Create a table for the VectorStore.
See more: llama_index_cloud_sql_pg.engine.PostgresEngine.init_vector_store_table
llama_index_cloud_sql_pg.index_store.PostgresIndexStore
PostgresIndexStore(
key: object,
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
index_store: llama_index_cloud_sql_pg.async_index_store.AsyncPostgresIndexStore,
)
PostgresIndexStore constructor.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.aadd_index_struct
aadd_index_struct(
index_struct: llama_index.core.data_structs.data_structs.IndexStruct,
) -> None
Add an index struct.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.aadd_index_struct
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.add_index_struct
add_index_struct(
index_struct: llama_index.core.data_structs.data_structs.IndexStruct,
) -> None
Add an index struct.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.add_index_struct
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.adelete_index_struct
adelete_index_struct(key: str) -> None
Delete an index struct.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.adelete_index_struct
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.aget_index_struct
aget_index_struct(
struct_id: typing.Optional[str] = None,
) -> typing.Optional[llama_index.core.data_structs.data_structs.IndexStruct]
Get an index struct.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.aget_index_struct
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.aindex_structs
aindex_structs() -> list[llama_index.core.data_structs.data_structs.IndexStruct]
Get all index structs.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.aindex_structs
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.create
create(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
) -> llama_index_cloud_sql_pg.index_store.PostgresIndexStore
Create a new PostgresIndexStore instance.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.create
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.create_sync
create_sync(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
) -> llama_index_cloud_sql_pg.index_store.PostgresIndexStore
Create a new PostgresIndexStore sync instance.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.create_sync
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.delete_index_struct
delete_index_struct(key: str) -> None
Delete an index struct.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.delete_index_struct
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.get_index_struct
get_index_struct(
struct_id: typing.Optional[str] = None,
) -> typing.Optional[llama_index.core.data_structs.data_structs.IndexStruct]
Get an index struct.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.get_index_struct
llama_index_cloud_sql_pg.index_store.PostgresIndexStore.index_structs
index_structs() -> list[llama_index.core.data_structs.data_structs.IndexStruct]
Get all index structs.
See more: llama_index_cloud_sql_pg.index_store.PostgresIndexStore.index_structs
llama_index_cloud_sql_pg.indexes.BaseIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: llama_index_cloud_sql_pg.indexes.BaseIndex.index_options
llama_index_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_
_generate_next_value_(start, count, last_values)
Generate the next value when not given.
See more: llama_index_cloud_sql_pg.indexes.DistanceStrategy.generate_next_value
llama_index_cloud_sql_pg.indexes.HNSWIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: llama_index_cloud_sql_pg.indexes.HNSWIndex.index_options
llama_index_cloud_sql_pg.indexes.HNSWQueryOptions.to_string
to_string() -> str
Convert index attributes to string.
See more: llama_index_cloud_sql_pg.indexes.HNSWQueryOptions.to_string
llama_index_cloud_sql_pg.indexes.IVFFlatIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: llama_index_cloud_sql_pg.indexes.IVFFlatIndex.index_options
llama_index_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string
to_string() -> str
Convert index attributes to string.
See more: llama_index_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string
llama_index_cloud_sql_pg.indexes.QueryOptions.to_string
to_string() -> str
Convert index attributes to string.
See more: llama_index_cloud_sql_pg.indexes.QueryOptions.to_string
llama_index_cloud_sql_pg.reader.PostgresReader
PostgresReader(
key: object,
engine: PostgresEngine,
reader: AsyncPostgresReader,
is_remote: bool = True,
)
PostgresReader constructor.
llama_index_cloud_sql_pg.reader.PostgresReader.alazy_load_data
alazy_load_data() -> typing.AsyncIterable[llama_index.core.schema.Document]
Asynchronously load Cloud SQL postgres data into Document objects lazily.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.alazy_load_data
llama_index_cloud_sql_pg.reader.PostgresReader.aload_data
aload_data() -> list[llama_index.core.schema.Document]
Asynchronously load Cloud SQL postgres data into Document objects.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.aload_data
llama_index_cloud_sql_pg.reader.PostgresReader.class_name
class_name() -> str
Get class name.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.class_name
llama_index_cloud_sql_pg.reader.PostgresReader.create
create(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
query: typing.Optional[str] = None,
table_name: typing.Optional[str] = None,
schema_name: str = "public",
content_columns: typing.Optional[list[str]] = None,
metadata_columns: typing.Optional[list[str]] = None,
metadata_json_column: typing.Optional[str] = None,
format: typing.Optional[str] = None,
formatter: typing.Optional[typing.Callable] = None,
is_remote: bool = True,
) -> llama_index_cloud_sql_pg.reader.PostgresReader
Asynchronously create an PostgresReader instance.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.create
llama_index_cloud_sql_pg.reader.PostgresReader.create_sync
create_sync(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
query: typing.Optional[str] = None,
table_name: typing.Optional[str] = None,
schema_name: str = "public",
content_columns: typing.Optional[list[str]] = None,
metadata_columns: typing.Optional[list[str]] = None,
metadata_json_column: typing.Optional[str] = None,
format: typing.Optional[str] = None,
formatter: typing.Optional[typing.Callable] = None,
is_remote: bool = True,
) -> llama_index_cloud_sql_pg.reader.PostgresReader
Synchronously create an PostgresReader instance.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.create_sync
llama_index_cloud_sql_pg.reader.PostgresReader.lazy_load_data
lazy_load_data() -> typing.Iterable[llama_index.core.schema.Document]
Synchronously load Cloud SQL postgres data into Document objects lazily.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.lazy_load_data
llama_index_cloud_sql_pg.reader.PostgresReader.load_data
load_data() -> list[llama_index.core.schema.Document]
Synchronously load Cloud SQL postgres data into Document objects.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.load_data
llama_index_cloud_sql_pg.reader.PostgresReader.model_post_init
model_post_init(context: Any, /) -> None
This function is meant to behave like a BaseModel method to initialise private attributes.
See more: llama_index_cloud_sql_pg.reader.PostgresReader.model_post_init
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore
PostgresVectorStore(
key: object,
engine: PostgresEngine,
vs: AsyncPostgresVectorStore,
stores_text: bool = True,
is_embedding_query: bool = True,
)
PostgresVectorStore constructor.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aapply_vector_index
aapply_vector_index(
index: llama_index_cloud_sql_pg.indexes.BaseIndex,
name: typing.Optional[str] = None,
concurrently: bool = False,
) -> None
Create an index on the vector store table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aapply_vector_index
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aclear
aclear() -> None
Asynchronously delete all nodes from the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aclear
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.add
add(
nodes: typing.Sequence[llama_index.core.schema.BaseNode], **add_kwargs: typing.Any
) -> list[str]
Synchronously add nodes to the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.add
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.adelete
adelete(ref_doc_id: str, **delete_kwargs: typing.Any) -> None
Asynchronously delete nodes belonging to provided parent document from the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.adelete
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.adelete_nodes
adelete_nodes(
node_ids: typing.Optional[list[str]] = None,
filters: typing.Optional[
llama_index.core.vector_stores.types.MetadataFilters
] = None,
**delete_kwargs: typing.Any
) -> None
Asynchronously delete a set of nodes from the table matching the provided nodes and filters.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.adelete_nodes
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.adrop_vector_index
adrop_vector_index(index_name: typing.Optional[str] = None) -> None
Drop the vector index.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.adrop_vector_index
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aget_nodes
aget_nodes(
node_ids: typing.Optional[list[str]] = None,
filters: typing.Optional[
llama_index.core.vector_stores.types.MetadataFilters
] = None,
) -> list[llama_index.core.schema.BaseNode]
Asynchronously get nodes from the table matching the provided nodes and filters.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aget_nodes
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.ais_valid_index
ais_valid_index(index_name: typing.Optional[str] = None) -> bool
Check if index exists in the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.ais_valid_index
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.apply_vector_index
apply_vector_index(
index: llama_index_cloud_sql_pg.indexes.BaseIndex,
name: typing.Optional[str] = None,
concurrently: bool = False,
) -> None
Create an index on the vector store table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.apply_vector_index
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aquery
aquery(
query: llama_index.core.vector_stores.types.VectorStoreQuery, **kwargs: typing.Any
) -> llama_index.core.vector_stores.types.VectorStoreQueryResult
Asynchronously query vector store.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aquery
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.areindex
areindex(index_name: typing.Optional[str] = None) -> None
Re-index the vector store table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.areindex
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aset_maintenance_work_mem
aset_maintenance_work_mem(num_leaves: int, vector_size: int) -> None
Set database maintenance work memory (for index creation).
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.aset_maintenance_work_mem
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.async_add
async_add(
nodes: typing.Sequence[llama_index.core.schema.BaseNode], **kwargs: typing.Any
) -> list[str]
Asynchronously add nodes to the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.async_add
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.class_name
class_name() -> str
Get the class name, used as a unique ID in serialization.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.class_name
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.clear
clear() -> None
Synchronously delete all nodes from the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.clear
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.create
create(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
id_column: str = "node_id",
text_column: str = "text",
embedding_column: str = "embedding",
metadata_json_column: str = "li_metadata",
metadata_columns: list[str] = [],
ref_doc_id_column: str = "ref_doc_id",
node_column: str = "node_data",
stores_text: bool = True,
is_embedding_query: bool = True,
distance_strategy: llama_index_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
index_query_options: typing.Optional[
llama_index_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> llama_index_cloud_sql_pg.vector_store.PostgresVectorStore
Create an PostgresVectorStore instance and validates the table schema.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.create
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.create_sync
create_sync(
engine: llama_index_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
id_column: str = "node_id",
text_column: str = "text",
embedding_column: str = "embedding",
metadata_json_column: str = "li_metadata",
metadata_columns: list[str] = [],
ref_doc_id_column: str = "ref_doc_id",
node_column: str = "node_data",
stores_text: bool = True,
is_embedding_query: bool = True,
distance_strategy: llama_index_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
index_query_options: typing.Optional[
llama_index_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> llama_index_cloud_sql_pg.vector_store.PostgresVectorStore
Create an PostgresVectorStore instance and validates the table schema.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.create_sync
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.delete
delete(ref_doc_id: str, **delete_kwargs: typing.Any) -> None
Synchronously delete nodes belonging to provided parent document from the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.delete
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.delete_nodes
delete_nodes(
node_ids: typing.Optional[list[str]] = None,
filters: typing.Optional[
llama_index.core.vector_stores.types.MetadataFilters
] = None,
**delete_kwargs: typing.Any
) -> None
Synchronously delete a set of nodes from the table matching the provided nodes and filters.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.delete_nodes
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.drop_vector_index
drop_vector_index(index_name: typing.Optional[str] = None) -> None
Drop the vector index.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.drop_vector_index
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.get_nodes
get_nodes(
node_ids: typing.Optional[list[str]] = None,
filters: typing.Optional[
llama_index.core.vector_stores.types.MetadataFilters
] = None,
) -> list[llama_index.core.schema.BaseNode]
Asynchronously get nodes from the table matching the provided nodes and filters.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.get_nodes
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.is_valid_index
is_valid_index(index_name: typing.Optional[str] = None) -> bool
Check if index exists in the table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.is_valid_index
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.model_post_init
model_post_init(context: Any, /) -> None
This function is meant to behave like a BaseModel method to initialise private attributes.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.model_post_init
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.query
query(
query: llama_index.core.vector_stores.types.VectorStoreQuery, **kwargs: typing.Any
) -> llama_index.core.vector_stores.types.VectorStoreQueryResult
Synchronously query vector store.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.query
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.reindex
reindex(index_name: typing.Optional[str] = None) -> None
Re-index the vector store table.
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.reindex
llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.set_maintenance_work_mem
set_maintenance_work_mem(num_leaves: int, vector_size: int) -> None
Set database maintenance work memory (for index creation).
See more: llama_index_cloud_sql_pg.vector_store.PostgresVectorStore.set_maintenance_work_mem