API documentation for vector_store
module.
Classes
DialectSemantics
DialectSemantics()
Abstract base class for dialect semantics.
DistanceStrategy
DistanceStrategy(value)
Enum for distance calculation strategies.
GoogleSqlSemnatics
GoogleSqlSemnatics()
Implementation of dialect semantics for Google SQL.
PGSqlSemnatics
PGSqlSemnatics()
Implementation of dialect semantics for PostgreSQL.
QueryParameters
QueryParameters(
algorithm=NearestNeighborsAlgorithm.EXACT_NEAREST_NEIGHBOR,
distance_strategy=DistanceStrategy.EUCLIDEIAN,
read_timestamp: typing.Optional[datetime.datetime] = None,
min_read_timestamp: typing.Optional[datetime.datetime] = None,
max_staleness: typing.Optional[datetime.timedelta] = None,
exact_staleness: typing.Optional[datetime.timedelta] = None,
)
Class representing query parameters for nearest neighbors search.
SecondaryIndex
SecondaryIndex(
index_name: "str",
columns: "list[str]",
storing_columns: "Optional[list[str]]" = None,
)
SecondaryIndex(index_name: 'str', columns: 'list[str]', storing_columns: 'Optional[list[str]]' = None)
SpannerVectorStore
SpannerVectorStore(instance_id: str, database_id: str, table_name: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, id_column: str = 'langchain_id', content_column: str = 'content', embedding_column: str = 'embedding', client: typing.Optional[google.cloud.spanner_v1.client.Client] = None, metadata_columns: typing.Optional[typing.List[str]] = None, ignore_metadata_columns: typing.Optional[typing.List[str]] = None, metadata_json_column: typing.Optional[str] = None, query_parameters: langchain_google_spanner.vector_store.QueryParameters = <langchain_google_spanner.vector_store.QueryParameters object>)
Initialize the SpannerVectorStore.
Parameters:
- instance_id (str): The ID of the Spanner instance.
- database_id (str): The ID of the Spanner database.
- table_name (str): The name of the table.
- embedding_service (Embeddings): The embedding service.
- id_column (str): The name of the row ID column. Defaults to ID_COLUMN_NAME.
- content_column (str): The name of the content column. Defaults to CONTENT_COLUMN_NAME.
- embedding_column (str): The name of the embedding column. Defaults to EMBEDDING_COLUMN_NAME.
- client (Client): The Spanner client. Defaults to Client().
- metadata_columns (Optional[List[str]]): List of metadata columns. Defaults to None.
- ignore_metadata_columns (Optional[List[str]]): List of metadata columns to ignore. Defaults to None.
- metadata_json_column (Optional[str]): The generic metadata column. Defaults to None.
- query_parameters (QueryParameters): The query parameters. Defaults to QueryParameters().
TableColumn
TableColumn(name: str, type: str, is_null: bool = True)
Represents column configuration, to be used as part of create DDL statement for table creation.