PostgresVectorStore(
key,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
embedding_service: langchain_core.embeddings.embeddings.Embeddings,
table_name: str,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.List[str] = [],
id_column: str = "langchain_id",
metadata_json_column: typing.Optional[str] = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
)
Google Cloud SQL for PostgreSQL Vector Store class
Properties
embeddings
Access the query embedding object if available.
Methods
aadd_documents
aadd_documents(
documents: typing.List[langchain_core.documents.base.Document],
ids: typing.Optional[typing.List[str]] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more documents through the embeddings and add to the vectorstore.
aadd_texts
aadd_texts(
texts: typing.Iterable[str],
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[typing.List[str]] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more texts through the embeddings and add to the vectorstore.
add_documents
add_documents(
documents: typing.List[langchain_core.documents.base.Document],
ids: typing.Optional[typing.List[str]] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more documents through the embeddings and add to the vectorstore.
add_texts
add_texts(
texts: typing.Iterable[str],
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[typing.List[str]] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more texts through the embeddings and add to the vectorstore.
adelete
adelete(
ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]
Delete by vector ID or other criteria.
Returns | |
---|---|
Type | Description |
Optional[bool] |
True if deletion is successful, False otherwise, None if not implemented. |
afrom_documents
afrom_documents(
documents: typing.List[langchain_core.documents.base.Document],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
ids: typing.Optional[typing.List[str]] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.List[str] = [],
ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
**kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Return VectorStore initialized from documents and embeddings.
afrom_texts
afrom_texts(
texts: typing.List[str],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[typing.List[str]] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.List[str] = [],
ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
**kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
amax_marginal_relevance_search(
query: str,
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
amax_marginal_relevance_search_by_vector
amax_marginal_relevance_search_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
asimilarity_search
asimilarity_search(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to query.
asimilarity_search_by_vector
asimilarity_search_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to embedding vector.
asimilarity_search_with_score
asimilarity_search_with_score(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance.
create
create(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
embedding_service: langchain_core.embeddings.embeddings.Embeddings,
table_name: str,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.List[str] = [],
ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: typing.Optional[str] = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
)
Constructor for PostgresVectorStore.
Parameters | |
---|---|
Name | Description |
engine |
PostgresEngine
Connection pool engine for managing connections to Cloud SQL for PostgreSQL database. |
embedding_service |
Embeddings
Text embedding model to use. |
table_name |
str
Name of an existing table or table to be created. |
content_column |
str
Column that represent a Document's page_content. Defaults to "content". |
embedding_column |
str
Column for embedding vectors. The embedding is generated from the document value. Defaults to "embedding". |
metadata_columns |
List[str]
Column(s) that represent a document's metadata. |
ignore_metadata_columns |
List[str]
Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns. Defaults to None. |
id_column |
str
Column that represents the Document's id. Defaults to "langchain_id". |
metadata_json_column |
str
Column to store metadata as JSON. Defaults to "langchain_metadata". |
delete
delete(
ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]
Delete by vector ID or other criteria.
Returns | |
---|---|
Type | Description |
Optional[bool] |
True if deletion is successful, False otherwise, None if not implemented. |
from_documents
from_documents(
documents: typing.List[langchain_core.documents.base.Document],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
ids: typing.Optional[typing.List[str]] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.List[str] = [],
ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
**kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Return VectorStore initialized from documents and embeddings.
from_texts
from_texts(
texts: typing.List[str],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[typing.List[str]] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.List[str] = [],
ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
**kwargs: typing.Any
)
Return VectorStore initialized from texts and embeddings.
max_marginal_relevance_search
max_marginal_relevance_search(
query: str,
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
max_marginal_relevance_search_by_vector
max_marginal_relevance_search_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
similarity_search
similarity_search(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to query.
similarity_search_by_vector
similarity_search_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to embedding vector.
similarity_search_with_score
similarity_search_with_score(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance.