MySQLVectorStore(engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine, embedding_service: langchain_core.embeddings.embeddings.Embeddings, table_name: str, content_column: str = 'content', embedding_column: str = 'embedding', metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = 'langchain_id', metadata_json_column: typing.Optional[str] = 'langchain_metadata', k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, query_options: langchain_google_cloud_sql_mysql.indexes.QueryOptions = QueryOptions(num_partitions=None, num_neighbors=10, distance_measure=<DistanceMeasure.L2_SQUARED: 'l2_squared'>, search_type=<SearchType.KNN: 'KNN'>))
Constructor for MySQLVectorStore.
Parameters |
|
---|---|
Name | Description |
engine |
MySQLEngine
Connection pool engine for managing connections to Cloud SQL for MySQL database. |
embedding_service |
Embeddings
Text embedding model to use. |
table_name |
str
Name of an existing table or table to be created. |
content_column |
str
Column that represent a Document's page_content. Defaults to "content". |
embedding_column |
str
Column for embedding vectors. The embedding is generated from the document value. Defaults to "embedding". |
metadata_columns |
List[str]
Column(s) that represent a document's metadata. |
ignore_metadata_columns |
List[str]
Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns. Defaults to None. |
id_column |
str
Column that represents the Document's id. Defaults to "langchain_id". |
metadata_json_column |
str
Column to store metadata as JSON. Defaults to "langchain_metadata". |
k |
int
The number of documents to return as the final result of a similarity search. Defaults to 4. |
fetch_k |
int
The number of documents to initially retrieve from the database during a similarity search. These documents are then re-ranked using MMR to select the final |
lambda_mult |
float
The weight used to balance relevance and diversity in the MMR algorithm. A higher value emphasizes diversity more, while a lower value prioritizes relevance. Defaults to 0.5. |
Properties
embeddings
Access the query embedding object if available.
Methods
add_documents
add_documents(
documents: typing.List[langchain_core.documents.base.Document],
ids: typing.Optional[typing.List[str]] = None,
**kwargs: typing.Any
) -> typing.List[str]
Add or update documents in the vectorstore.
Exceptions | |
---|---|
Type | Description |
ValueError |
If the number of ids does not match the number of documents. |
add_texts
add_texts(
texts: typing.Iterable[str],
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[typing.List[str]] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more texts through the embeddings and add to the vectorstore.
Exceptions | |
---|---|
Type | Description |
ValueError |
If the number of metadatas does not match the number of texts. |
ValueError |
If the number of ids does not match the number of texts. |
delete
delete(ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any) -> bool
Delete by vector ID or other criteria.
Returns | |
---|---|
Type | Description |
Optional[bool] |
True if deletion is successful, False otherwise, None if not implemented. |
from_documents
from_documents(documents: typing.List[langchain_core.documents.base.Document], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine, table_name: str, ids: typing.Optional[typing.List[str]] = None, content_column: str = 'content', embedding_column: str = 'embedding', metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = 'langchain_id', metadata_json_column: str = 'langchain_metadata', query_options: langchain_google_cloud_sql_mysql.indexes.QueryOptions = QueryOptions(num_partitions=None, num_neighbors=10, distance_measure=<DistanceMeasure.L2_SQUARED: 'l2_squared'>, search_type=<SearchType.KNN: 'KNN'>), **kwargs: typing.Any) -> langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore
Return VectorStore initialized from documents and embeddings.
Returns | |
---|---|
Type | Description |
VectorStore |
VectorStore initialized from documents and embeddings. |
from_texts
from_texts(texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine, table_name: str, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, content_column: str = 'content', embedding_column: str = 'embedding', metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = 'langchain_id', metadata_json_column: str = 'langchain_metadata', query_options: langchain_google_cloud_sql_mysql.indexes.QueryOptions = QueryOptions(num_partitions=None, num_neighbors=10, distance_measure=<DistanceMeasure.L2_SQUARED: 'l2_squared'>, search_type=<SearchType.KNN: 'KNN'>), **kwargs: typing.Any)
Return VectorStore initialized from texts and embeddings.
Returns | |
---|---|
Type | Description |
VectorStore |
VectorStore initialized from texts and embeddings. |
max_marginal_relevance_search
max_marginal_relevance_search(
query: str,
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
query_options: typing.Optional[
langchain_google_cloud_sql_mysql.indexes.QueryOptions
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Performs Maximal Marginal Relevance (MMR) search based on a text query.
max_marginal_relevance_search_by_vector
max_marginal_relevance_search_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
query_options: typing.Optional[
langchain_google_cloud_sql_mysql.indexes.QueryOptions
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Performs Maximal Marginal Relevance (MMR) search based on a vector embedding.
max_marginal_relevance_search_with_score_by_vector
max_marginal_relevance_search_with_score_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
query_options: typing.Optional[
langchain_google_cloud_sql_mysql.indexes.QueryOptions
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Performs Maximal Marginal Relevance (MMR) search based on a vector embedding and returns documents with scores.
similarity_search
similarity_search(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Searches for similar documents based on a text query.
similarity_search_by_vector
similarity_search_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
query_options: typing.Optional[
langchain_google_cloud_sql_mysql.indexes.QueryOptions
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Searches for similar documents based on a vector embedding.
similarity_search_with_score
similarity_search_with_score(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
query_options: typing.Optional[
langchain_google_cloud_sql_mysql.indexes.QueryOptions
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Searches for similar documents based on a text query and returns their scores.
similarity_search_with_score_by_vector
similarity_search_with_score_by_vector(
embedding: typing.List[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
query_options: typing.Optional[
langchain_google_cloud_sql_mysql.indexes.QueryOptions
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Searches for similar documents based on a vector embedding and returns their scores.