ArimaForecastingMetrics(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Model evaluation metrics for ARIMA forecasting models.
Attributes | |
---|---|
Name | Description |
non_seasonal_order |
Sequence[google.cloud.bigquery_v2.types.Model.ArimaOrder]
Non-seasonal order. |
arima_fitting_metrics |
Sequence[google.cloud.bigquery_v2.types.Model.ArimaFittingMetrics]
Arima model fitting metrics. |
seasonal_periods |
Sequence[google.cloud.bigquery_v2.types.Model.SeasonalPeriod.SeasonalPeriodType]
Seasonal periods. Repeated because multiple periods are supported for one time series. |
has_drift |
Sequence[bool]
Whether Arima model fitted with drift or not. It is always false when d is not 1. |
time_series_id |
Sequence[str]
Id to differentiate different time series for the large-scale case. |
arima_single_model_forecasting_metrics |
Sequence[google.cloud.bigquery_v2.types.Model.ArimaForecastingMetrics.ArimaSingleModelForecastingMetrics]
Repeated as there can be many metric sets (one for each model) in auto-arima and the large-scale case. |
Inheritance
builtins.object > proto.message.Message > ArimaForecastingMetricsClasses
ArimaSingleModelForecastingMetrics
ArimaSingleModelForecastingMetrics(
mapping=None, *, ignore_unknown_fields=False, **kwargs
)
Model evaluation metrics for a single ARIMA forecasting model.
Methods
__delattr__
__delattr__(key)
Delete the value on the given field.
This is generally equivalent to setting a falsy value.
__eq__
__eq__(other)
Return True if the messages are equal, False otherwise.
__ne__
__ne__(other)
Return True if the messages are unequal, False otherwise.
__setattr__
__setattr__(key, value)
Set the value on the given field.
For well-known protocol buffer types which are marshalled, either the protocol buffer object or the Python equivalent is accepted.