Class MinMaxScaler (1.32.0)

MinMaxScaler()

Transform features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.

Methods

__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

fit

fit(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y=None,
) -> bigframes.ml.preprocessing.MinMaxScaler

Compute the minimum and maximum to be used for later scaling.

Parameters
Name Description
X bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series

The Dataframe or Series with training data.

y default None

Ignored.

Returns
Type Description
MaxAbsScaler Fitted scaler.

fit_transform

fit_transform(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Optional[
        typing.Union[
            bigframes.dataframe.DataFrame,
            bigframes.series.Series,
            pandas.core.frame.DataFrame,
            pandas.core.series.Series,
        ]
    ] = None,
) -> bigframes.dataframe.DataFrame

Fit to data, then transform it.

Parameters
Name Description
X bigframes.dataframe.DataFrame or bigframes.series.Series

Series or DataFrame of shape (n_samples, n_features). Input samples.

y bigframes.dataframe.DataFrame or bigframes.series.Series

Series or DataFrame of shape (n_samples,) or (n_samples, n_outputs). Default None. Target values (None for unsupervised transformations).

Returns
Type Description
bigframes.dataframe.DataFrame DataFrame of shape (n_samples, n_features_new). Transformed DataFrame.

get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

Parameter
Name Description
deep bool, default True

Default True. If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type Description
Dictionary A dictionary of parameter names mapped to their values.

to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

Parameters
Name Description
model_name str

The name of the model.

replace bool, default False

Determine whether to replace if the model already exists. Default to False.

transform

transform(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ]
) -> bigframes.dataframe.DataFrame

Scale the data.

Parameter
Name Description
X bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series

The DataFrame or Series to be transformed.

Returns
Type Description
bigframes.dataframe.DataFrame Transformed result.