- 1.33.0 (latest)
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
API documentation for bigquery
package.
Packages Functions
approx_top_count
approx_top_count(
series: bigframes.series.Series, number: int
) -> bigframes.series.Series
Returns the approximate top elements of expression
as an array of STRUCTs.
The number parameter specifies the number of elements returned.
Each STRUCT
contains two fields. The first field (named value
) contains an input
value. The second field (named count
) contains an INT64
specifying the number
of times the value was returned.
Returns NULL
if there are zero input rows.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(["apple", "apple", "pear", "pear", "pear", "banana"])
>>> bbq.approx_top_count(s, number=2)
[{'value': 'pear', 'count': 3}, {'value': 'apple', 'count': 2}]
Parameters | |
---|---|
Name | Description |
series |
The Series with any data type that the |
number |
An integer specifying the number of times the value was returned. |
array_agg
array_agg(
obj: groupby.SeriesGroupBy | groupby.DataFrameGroupBy,
) -> series.Series | dataframe.DataFrame
Group data and create arrays from selected columns, omitting NULLs to avoid BigQuery errors (NULLs not allowed in arrays).
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> import numpy as np
>>> bpd.options.display.progress_bar = None
For a SeriesGroupBy object:
>>> lst = ['a', 'a', 'b', 'b', 'a']
>>> s = bpd.Series([1, 2, 3, 4, np.nan], index=lst)
>>> bbq.array_agg(s.groupby(level=0))
a [1. 2.]
b [3. 4.]
dtype: list<item: double>[pyarrow]
For a DataFrameGroupBy object:
>>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
>>> df = bpd.DataFrame(l, columns=["a", "b", "c"])
>>> bbq.array_agg(df.groupby(by=["b"]))
a c
b
1.0 [2] [3]
2.0 [1 1] [3 2]
<BLANKLINE>
[2 rows x 2 columns]
Parameter | |
---|---|
Name | Description |
obj |
A GroupBy object to be applied the function. |
array_length
array_length(series: bigframes.series.Series) -> bigframes.series.Series
Compute the length of each array element in the Series.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series([[1, 2, 8, 3], [], [3, 4]])
>>> bbq.array_length(s)
0 4
1 0
2 2
dtype: Int64
You can also apply this function directly to Series.
>>> s.apply(bbq.array_length, by_row=False)
0 4
1 0
2 2
dtype: Int64
Parameter | |
---|---|
Name | Description |
series |
A Series with array columns. |
array_to_string
array_to_string(
series: bigframes.series.Series, delimiter: str
) -> bigframes.series.Series
Converts array elements within a Series into delimited strings.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> import numpy as np
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series([["H", "i", "!"], ["Hello", "World"], np.nan, [], ["Hi"]])
>>> bbq.array_to_string(s, delimiter=", ")
0 H, i, !
1 Hello, World
2
3
4 Hi
dtype: string
Parameters | |
---|---|
Name | Description |
series |
A Series containing arrays. |
delimiter |
The string used to separate array elements. |
create_vector_index
create_vector_index(
table_id: str,
column_name: str,
*,
replace: bool = False,
index_name: typing.Optional[str] = None,
distance_type="cosine",
stored_column_names: typing.Collection[str] = (),
index_type: str = "ivf",
ivf_options: typing.Optional[typing.Mapping] = None,
tree_ah_options: typing.Optional[typing.Mapping] = None,
session: typing.Optional[bigframes.session.Session] = None
) -> None
Creates a new vector index on a column of a table.
This method calls the CREATE VECTOR INDEX DDL statement
<https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_vector_index_statement>
_.
json_extract
json_extract(
input: bigframes.series.Series, json_path: str
) -> bigframes.series.Series
Extracts a JSON value and converts it to a SQL JSON-formatted STRING
or JSON
value. This function uses single quotes and brackets to escape invalid JSONPath
characters in JSON keys.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['{"class": {"students": [{"id": 5}, {"id": 12}]}}'])
>>> bbq.json_extract(s, json_path="$.class")
0 {"students":[{"id":5},{"id":12}]}
dtype: string
Parameters | |
---|---|
Name | Description |
input |
The Series containing JSON data (as native JSON objects or JSON-formatted strings). |
json_path |
The JSON path identifying the data that you want to obtain from the input. |
json_extract_array
json_extract_array(
input: bigframes.series.Series, json_path: str = "$"
) -> bigframes.series.Series
Extracts a JSON array and converts it to a SQL array of JSON-formatted
STRING
or JSON
values. This function uses single quotes and brackets to
escape invalid JSONPath characters in JSON keys.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['[1, 2, 3]', '[4, 5]'])
>>> bbq.json_extract_array(s)
0 ['1' '2' '3']
1 ['4' '5']
dtype: list<item: string>[pyarrow]
>>> s = bpd.Series([
... '{"fruits": [{"name": "apple"}, {"name": "cherry"}]}',
... '{"fruits": [{"name": "guava"}, {"name": "grapes"}]}'
... ])
>>> bbq.json_extract_array(s, "$.fruits")
0 ['{"name":"apple"}' '{"name":"cherry"}']
1 ['{"name":"guava"}' '{"name":"grapes"}']
dtype: list<item: string>[pyarrow]
>>> s = bpd.Series([
... '{"fruits": {"color": "red", "names": ["apple","cherry"]}}',
... '{"fruits": {"color": "green", "names": ["guava", "grapes"]}}'
... ])
>>> bbq.json_extract_array(s, "$.fruits.names")
0 ['"apple"' '"cherry"']
1 ['"guava"' '"grapes"']
dtype: list<item: string>[pyarrow]
Parameters | |
---|---|
Name | Description |
input |
The Series containing JSON data (as native JSON objects or JSON-formatted strings). |
json_path |
The JSON path identifying the data that you want to obtain from the input. |
json_extract_string_array
json_extract_string_array(
input: bigframes.series.Series,
json_path: str = "$",
value_dtype: typing.Optional[
typing.Union[
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.dtypes.dtypes.ArrowDtype,
geopandas.array.GeometryDtype,
typing.Literal[
"boolean",
"Float64",
"Int64",
"int64[pyarrow]",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
"decimal128(38, 9)[pyarrow]",
"decimal256(76, 38)[pyarrow]",
"binary[pyarrow]",
],
]
] = None,
) -> bigframes.series.Series
Extracts a JSON array and converts it to a SQL array of STRING
values.
A value_dtype
can be provided to further coerce the data type of the
values in the array. This function uses single quotes and brackets to escape
invalid JSONPath characters in JSON keys.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['[1, 2, 3]', '[4, 5]'])
>>> bbq.json_extract_string_array(s)
0 ['1' '2' '3']
1 ['4' '5']
dtype: list<item: string>[pyarrow]
>>> bbq.json_extract_string_array(s, value_dtype='Int64')
0 [1 2 3]
1 [4 5]
dtype: list<item: int64>[pyarrow]
>>> s = bpd.Series([
... '{"fruits": {"color": "red", "names": ["apple","cherry"]}}',
... '{"fruits": {"color": "green", "names": ["guava", "grapes"]}}'
... ])
>>> bbq.json_extract_string_array(s, "$.fruits.names")
0 ['apple' 'cherry']
1 ['guava' 'grapes']
dtype: list<item: string>[pyarrow]
Parameters | |
---|---|
Name | Description |
input |
The Series containing JSON data (as native JSON objects or JSON-formatted strings). |
json_path |
The JSON path identifying the data that you want to obtain from the input. |
value_dtype |
The data type supported by BigFrames DataFrame. |
json_set
json_set(
input: bigframes.series.Series,
json_path_value_pairs: typing.Sequence[typing.Tuple[str, typing.Any]],
) -> bigframes.series.Series
Produces a new JSON value within a Series by inserting or replacing values at specified paths.
Examples:>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> import numpy as np
>>> bpd.options.display.progress_bar = None
>>> s = bpd.read_gbq("SELECT JSON '{\"a\": 1}' AS data")["data"]
>>> bbq.json_set(s, json_path_value_pairs=[("$.a", 100), ("$.b", "hi")])
0 {"a":100,"b":"hi"}
Name: data, dtype: large_string[pyarrow]
Parameters | |
---|---|
Name | Description |
input |
The Series containing JSON data (as native JSON objects or JSON-formatted strings). |
json_path_value_pairs |
Pairs of JSON path and the new value to insert/replace. |
parse_json
parse_json(input: bigframes.series.Series) -> bigframes.series.Series
Converts a series with a JSON-formatted STRING value to a JSON value.
Examples:>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['{"class": {"students": [{"id": 5}, {"id": 12}]}}'])
>>> s
0 {"class": {"students": [{"id": 5}, {"id": 12}]}}
dtype: string
>>> bbq.parse_json(s)
0 {"class":{"students":[{"id":5},{"id":12}]}}
dtype: large_string[pyarrow]
Parameter | |
---|---|
Name | Description |
input |
The Series containing JSON-formatted strings). |
struct
struct(value: dataframe.DataFrame) -> series.Series
Takes a DataFrame and converts it into a Series of structs with each struct entry corresponding to a DataFrame row and each struct field corresponding to a DataFrame column
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> import bigframes.series as series
>>> bpd.options.display.progress_bar = None
>>> srs = series.Series([{"version": 1, "project": "pandas"}, {"version": 2, "project": "numpy"},])
>>> df = srs.struct.explode()
>>> bbq.struct(df)
0 {'project': 'pandas', 'version': 1}
1 {'project': 'numpy', 'version': 2}
dtype: struct<project: string, version: int64>[pyarrow]
Args:
value (bigframes.dataframe.DataFrame):
The DataFrame to be converted to a Series of structs
Returns:
bigframes.series.Series: A new Series with struct entries representing rows of the original DataFrame
vector_search
vector_search(
base_table: str,
column_to_search: str,
query: Union[dataframe.DataFrame, series.Series],
*,
query_column_to_search: Optional[str] = None,
top_k: Optional[int] = None,
distance_type: Optional[Literal["euclidean", "cosine", "dot_product"]] = None,
fraction_lists_to_search: Optional[float] = None,
use_brute_force: Optional[bool] = None
) -> dataframe.DataFrame
Conduct vector search which searches embeddings to find semantically similar entities.
This method calls the VECTOR_SEARCH() SQL function
<https://cloud.google.com/bigquery/docs/reference/standard-sql/search_functions#vector_search>
_.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
DataFrame embeddings for which to find nearest neighbors. The ARRAY<FLOAT64>
column
is used as the search query:
>>> search_query = bpd.DataFrame({"query_id": ["dog", "cat"],
... "embedding": [[1.0, 2.0], [3.0, 5.2]]})
>>> bbq.vector_search(
... base_table="bigframes-dev.bigframes_tests_sys.base_table",
... column_to_search="my_embedding",
... query=search_query,
... top_k=2)
query_id embedding id my_embedding distance
1 cat [3. 5.2] 5 [5. 5.4] 2.009975
0 dog [1. 2.] 1 [1. 2.] 0.0
0 dog [1. 2.] 4 [1. 3.2] 1.2
1 cat [3. 5.2] 2 [2. 4.] 1.56205
<BLANKLINE>
[4 rows x 5 columns]
Series embeddings for which to find nearest neighbors:
>>> search_query = bpd.Series([[1.0, 2.0], [3.0, 5.2]],
... index=["dog", "cat"],
... name="embedding")
>>> bbq.vector_search(
... base_table="bigframes-dev.bigframes_tests_sys.base_table",
... column_to_search="my_embedding",
... query=search_query,
... top_k=2,
... use_brute_force=True)
embedding id my_embedding distance
dog [1. 2.] 1 [1. 2.] 0.0
cat [3. 5.2] 5 [5. 5.4] 2.009975
dog [1. 2.] 4 [1. 3.2] 1.2
cat [3. 5.2] 2 [2. 4.] 1.56205
<BLANKLINE>
[4 rows x 4 columns]
You can specify the name of the column in the query DataFrame embeddings and distance type. If you specify query_column_to_search_value, it will use the provided column which contains the embeddings for which to find nearest neighbors. Otherwiese, it uses the column_to_search value.
>>> search_query = bpd.DataFrame({"query_id": ["dog", "cat"],
... "embedding": [[1.0, 2.0], [3.0, 5.2]],
... "another_embedding": [[0.7, 2.2], [3.3, 5.2]]})
>>> bbq.vector_search(
... base_table="bigframes-dev.bigframes_tests_sys.base_table",
... column_to_search="my_embedding",
... query=search_query,
... distance_type="cosine",
... query_column_to_search="another_embedding",
... top_k=2)
query_id embedding another_embedding id my_embedding distance
1 cat [3. 5.2] [3.3 5.2] 2 [2. 4.] 0.005181
0 dog [1. 2.] [0.7 2.2] 4 [1. 3.2] 0.000013
1 cat [3. 5.2] [3.3 5.2] 1 [1. 2.] 0.005181
0 dog [1. 2.] [0.7 2.2] 3 [1.5 7. ] 0.004697
<BLANKLINE>
[4 rows x 6 columns]
Parameters | |
---|---|
Name | Description |
base_table |
The table to search for nearest neighbor embeddings. |
column_to_search |
The name of the base table column to search for nearest neighbor embeddings. The column must have a type of |
query |
A Series or DataFrame that provides the embeddings for which to find nearest neighbors. |
query_column_to_search |
Specifies the name of the column in the query that contains the embeddings for which to find nearest neighbors. The column must have a type of |
top_k |
Sepecifies the number of nearest neighbors to return. Default to 10. |
distance_type |
Specifies the type of metric to use to compute the distance between two vectors. Possible values are "euclidean", "cosine" and "dot_product". Default to "euclidean". |
fraction_lists_to_search |
Specifies the percentage of lists to search. Specifying a higher percentage leads to higher recall and slower performance, and the converse is true when specifying a lower percentage. It is only used when a vector index is also used. You can only specify |
use_brute_force |
Determines whether to use brute force search by skipping the vector index if one is available. Default to False. |