- 1.31.0 (latest)
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
LabelEncoder(
min_frequency: typing.Optional[int] = None,
max_categories: typing.Optional[int] = None,
)
Encode target labels with value between 0 and n_classes-1.
This transformer should be used to encode target values, i.e. y
, and
not the input X
.
Parameters | |
---|---|
Name | Description |
min_frequency |
Optional[int], default None
Specifies the minimum frequency below which a category will be considered infrequent. Default None. int: categories with a smaller cardinality will be considered infrequent as ßindex 0. |
max_categories |
Optional[int], default None
Specifies an upper limit to the number of output features for each input feature when considering infrequent categories. If there are infrequent categories, max_categories includes the category representing the infrequent categories along with the frequent categories. Default None. Set limit to 1,000,000. |
Methods
__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
fit
fit(
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.ml.preprocessing.LabelEncoder
Fit label encoder.
Parameter | |
---|---|
Name | Description |
y |
bigframes.dataframe.DataFrame or bigframes.series.Series
The DataFrame or Series with training data. |
Returns | |
---|---|
Type | Description |
LabelEncoder | Fitted encoder. |
fit_transform
fit_transform(
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
API documentation for fit_transform
method.
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
Parameter | |
---|---|
Name | Description |
deep |
bool, default True
Default |
Returns | |
---|---|
Type | Description |
Dictionary | A dictionary of parameter names mapped to their values. |
to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
Parameters | |
---|---|
Name | Description |
model_name |
str
The name of the model. |
replace |
bool, default False
Determine whether to replace if the model already exists. Default to False. |
transform
transform(
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Transform y using label encoding.
Parameter | |
---|---|
Name | Description |
y |
bigframes.dataframe.DataFrame or bigframes.series.Series
The DataFrame or Series to be transformed. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | The result is an array-like of values. |