- 1.25.0 (latest)
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
SamplingOptions(
max_download_size: typing.Optional[int] = 500,
enable_downsampling: bool = False,
sampling_method: typing.Literal["head", "uniform"] = "uniform",
random_state: typing.Optional[int] = None,
)
Encapsulates the configuration for data sampling.
Attributes |
|
---|---|
Name | Description |
max_download_size |
int, default 500
Download size threshold in MB. If value set to None, the download size won't be checked. |
enable_downsampling |
bool, default False
Whether to enable downsampling, If max_download_size is exceeded when downloading data (e.g., to_pandas()), the data will be downsampled if enable_downsampling is True, otherwise, an error will be raised. |
sampling_method |
str, default "uniform"
Downsampling algorithms to be chosen from, the choices are: "head": This algorithm returns a portion of the data from the beginning. It is fast and requires minimal computations to perform the downsampling.; "uniform": This algorithm returns uniform random samples of the data. |
random_state |
int, default None
The seed for the uniform downsampling algorithm. If provided, the uniform method may take longer to execute and require more computation. |