- 1.31.0 (latest)
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
ARIMAPlus()
Time Series ARIMA Plus model.
Methods
__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values
detect_anomalies
detect_anomalies(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
anomaly_prob_threshold: float = 0.95
) -> bigframes.dataframe.DataFrame
Detect the anomaly data points of the input.
Parameters | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series
Series or a DataFrame to detect anomalies. |
anomaly_prob_threshold |
float, default 0.95
Identifies the custom threshold to use for anomaly detection. The value must be in the range [0, 1), with a default value of 0.95. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | detected DataFrame. |
fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
API documentation for fit
method.
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
Parameter | |
---|---|
Name | Description |
deep |
bool, default True
Default |
Returns | |
---|---|
Type | Description |
Dictionary | A dictionary of parameter names mapped to their values. |
predict
predict(
X=None, *, horizon: int = 3, confidence_level: float = 0.95
) -> bigframes.dataframe.DataFrame
Predict the closest cluster for each sample in X.
Parameters | |
---|---|
Name | Description |
X |
default None
ignored, to be compatible with other APIs. |
confidence_level |
float, default 0.95
a float value that specifies percentage of the future values that fall in the prediction interval. The valid input range is [0.0, 1.0). |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | The predicted DataFrames. Which contains 2 columns "forecast_timestamp" and "forecast_value". |
register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
After register, go to Google Cloud Console (https://console.cloud.google.com/vertex-ai/models) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.
Parameter | |
---|---|
Name | Description |
vertex_ai_model_id |
Optional[str], default None
optional string id as model id in Vertex. If not set, will by default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation. |
score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrame
Calculate evaluation metrics of the model.
Parameters | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series
A BigQuery DataFrame only contains 1 column as evaluation timestamp. The timestamp must be within the horizon of the model, which by default is 1000 data points. |
y |
bigframes.dataframe.DataFrame or bigframes.series.Series
A BigQuery DataFrame only contains 1 column as evaluation numeric values. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | A DataFrame as evaluation result. |
summary
summary(show_all_candidate_models: bool = False) -> bigframes.dataframe.DataFrame
Summary of the evaluation metrics of the time series model.
Parameter | |
---|---|
Name | Description |
show_all_candidate_models |
bool, default to False
Whether to show evaluation metrics or an error message for either all candidate models or for only the best model with the lowest AIC. Default to False. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | A DataFrame as evaluation result. |
to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.forecasting.ARIMAPlus
Save the model to BigQuery.
Parameters | |
---|---|
Name | Description |
model_name |
str
the name of the model. |
replace |
bool, default False
whether to replace if the model already exists. Default to False. |
Returns | |
---|---|
Type | Description |
ARIMAPlus | saved model. |