- 1.89.0 (latest)
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
RuntimeConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The runtime config of a PipelineJob.
Attributes |
|
---|---|
Name | Description |
parameters |
MutableMapping[str, google.cloud.aiplatform_v1beta1.types.Value]
Deprecated. Use RuntimeConfig.parameter_values instead. The runtime parameters of the PipelineJob. The parameters will be passed into PipelineJob.pipeline_spec to replace the placeholders at runtime. This field is used by pipelines built using PipelineJob.pipeline_spec.schema_version 2.0.0 or lower,
such as pipelines built using Kubeflow Pipelines SDK 1.8 or
lower.
|
gcs_output_directory |
str
Required. A path in a Cloud Storage bucket, which will be treated as the root output directory of the pipeline. It is used by the system to generate the paths of output artifacts. The artifact paths are generated with a sub-path pattern {job_id}/{task_id}/{output_key} under the
specified output directory. The service account specified in
this pipeline must have the storage.objects.get and
storage.objects.create permissions for this bucket.
|
parameter_values |
MutableMapping[str, google.protobuf.struct_pb2.Value]
The runtime parameters of the PipelineJob. The parameters will be passed into PipelineJob.pipeline_spec to replace the placeholders at runtime. This field is used by pipelines built using PipelineJob.pipeline_spec.schema_version 2.1.0, such as
pipelines built using Kubeflow Pipelines SDK 1.9 or higher
and the v2 DSL.
|
failure_policy |
google.cloud.aiplatform_v1beta1.types.PipelineFailurePolicy
Represents the failure policy of a pipeline. Currently, the default of a pipeline is that the pipeline will continue to run until no more tasks can be executed, also known as PIPELINE_FAILURE_POLICY_FAIL_SLOW. However, if a pipeline is set to PIPELINE_FAILURE_POLICY_FAIL_FAST, it will stop scheduling any new tasks when a task has failed. Any scheduled tasks will continue to completion. |
input_artifacts |
MutableMapping[str, google.cloud.aiplatform_v1beta1.types.PipelineJob.RuntimeConfig.InputArtifact]
The runtime artifacts of the PipelineJob. The key will be the input artifact name and the value would be one of the InputArtifact. |
default_runtime |
google.cloud.aiplatform_v1beta1.types.PipelineJob.RuntimeConfig.DefaultRuntime
Optional. The default runtime for the PipelineJob. If not provided, Vertex Custom Job(on demand) is used as the runtime. For Vertex Custom Job, please refer to https://cloud.google.com/vertex-ai/docs/training/overview. |
Classes
DefaultRuntime
DefaultRuntime(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The default runtime for the PipelineJob.
.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields
InputArtifact
InputArtifact(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The type of an input artifact.
.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields
InputArtifactsEntry
InputArtifactsEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The abstract base class for a message.
Parameters | |
---|---|
Name | Description |
kwargs |
dict
Keys and values corresponding to the fields of the message. |
mapping |
Union[dict,
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields |
Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |
ParameterValuesEntry
ParameterValuesEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The abstract base class for a message.
Parameters | |
---|---|
Name | Description |
kwargs |
dict
Keys and values corresponding to the fields of the message. |
mapping |
Union[dict,
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields |
Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |
ParametersEntry
ParametersEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The abstract base class for a message.
Parameters | |
---|---|
Name | Description |
kwargs |
dict
Keys and values corresponding to the fields of the message. |
mapping |
Union[dict,
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields |
Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |
PersistentResourceRuntimeDetail
PersistentResourceRuntimeDetail(
mapping=None, *, ignore_unknown_fields=False, **kwargs
)
Persistent resource based runtime detail. For more information, refer to https://cloud.google.com/vertex-ai/docs/training/persistent-resource-overview
Methods
RuntimeConfig
RuntimeConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The runtime config of a PipelineJob.