- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
ModelMonitor(
model_monitor_name: str,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
)
Initializer for ModelMonitor.
Parameters |
|
---|---|
Name | Description |
model_monitor_name |
str
Required. A fully-qualified model monitor resource name or model monitor ID. Example: "projects/123/locations/us-central1/modelMonitors/456" or "456" when project and location are initialized or passed. |
project |
str
Required. Project to retrieve model monitor from. If not set, project set in aiplatform.init will be used. |
location |
str
Required. Location to retrieve model monitor from. If not set, location set in aiplatform.init will be used. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to retrieve this model monitor. Overrides credentials set in aiplatform.init. |
Properties
create_time
Time this resource was created.
display_name
Display name of this resource.
encryption_spec
Customer-managed encryption key options for this Vertex AI resource.
If this is set, then all resources created by this Vertex AI resource will be encrypted with the provided encryption key.
gca_resource
The underlying resource proto representation.
labels
User-defined labels containing metadata about this resource.
Read more about labels at https://goo.gl/xmQnxf
name
Name of this resource.
resource_name
Full qualified resource name.
update_time
Time this resource was last updated.
Methods
ModelMonitor
ModelMonitor(
model_monitor_name: str,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
)
Initializes class with project, location, and api_client.
Parameters | |
---|---|
Name | Description |
project |
str
Optional. Project of the resource noun. |
location |
str
Optional. The location of the resource noun. |
credentials |
google.auth.credentials.Credentials
Optional. custom credentials to use when accessing interacting with resource noun. |
resource_name |
str
A fully-qualified resource name or ID. |
create
create(
model_name: str,
model_version_id: str,
training_dataset: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput
] = None,
display_name: typing.Optional[str] = None,
model_monitoring_schema: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.schema.ModelMonitoringSchema
] = None,
tabular_objective_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.TabularObjective
] = None,
output_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.output.OutputSpec
] = None,
notification_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.notification.NotificationSpec
] = None,
explanation_spec: typing.Optional[
google.cloud.aiplatform_v1beta1.types.explanation.ExplanationSpec
] = None,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
model_monitor_id: typing.Optional[str] = None,
) -> vertexai.resources.preview.ml_monitoring.model_monitors.ModelMonitor
Creates a new ModelMonitor.
Parameters | |
---|---|
Name | Description |
model_name |
str
Required. A model resource name as model monitoring target. Format: |
model_version_id |
str
Required. Model version id. |
training_dataset |
objective.MonitoringInput
Optional. Training dataset used to train the model. It can serve as a baseline dataset to identify changes in production. |
display_name |
str
Optional. The user-defined name of the ModelMonitor. The name can be up to 128 characters long and can comprise any UTF-8 character. Display name of the ModelMonitor. |
model_monitoring_schema |
schema.ModelMonitoringSchema
Required for most models, but optional for Vertex AI AutoML Tables unless the schema information is not available. The Monitoring Schema specifies the model's features, prediction outputs and ground truth properties. It is used to extract pertinent data from the dataset and to process features based on their properties. Make sure that the schema aligns with your dataset, if it does not, Vertex AI will be unable to extract data form the dataset. |
tabular_objective_spec |
objective.TabularObjective
Optional. The default tabular monitoring objective spec for the model monitor. It can be overriden in the ModelMonitoringJob objective spec. |
output_spec |
output.OutputSpec
Optional. The default monitoring metrics/logs export spec, it can be overriden in the ModelMonitoringJob output spec. If not specified, a default Google Cloud Storage bucket will be created under your project. |
notification_spec |
notification.NotificationSpec
Optional. The default notification spec for monitoring result. It can be overriden in the ModelMonitoringJob notification spec. |
explanation_spec |
explanation.ExplanationSpec
Optional. The default explanation spec for feature attribution monitoring. It can be overriden in the ModelMonitoringJob explanation spec. |
project |
str
Optional. Project to retrieve model monitor from. If not set, project set in aiplatform.init will be used. |
location |
str
Optional. Location to retrieve model monitor from. If not set, location set in aiplatform.init will be used. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to create this model monitor. Overrides credentials set in aiplatform.init. |
model_monitor_id |
str
Optional. The unique ID of the model monitor, which will become the final component of the model monitor resource name. If not specified, it will be generated by Vertex AI. |
Returns | |
---|---|
Type | Description |
ModelMonitor |
The model monitor that was created. |
create_schedule
create_schedule(
cron: str,
target_dataset: vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput,
display_name: typing.Optional[str] = None,
model_monitoring_job_display_name: typing.Optional[str] = None,
start_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
end_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
tabular_objective_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.TabularObjective
] = None,
baseline_dataset: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput
] = None,
output_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.output.OutputSpec
] = None,
notification_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.notification.NotificationSpec
] = None,
explanation_spec: typing.Optional[
google.cloud.aiplatform_v1beta1.types.explanation.ExplanationSpec
] = None,
) -> google.cloud.aiplatform_v1beta1.types.schedule.Schedule
Creates a new Scheduled run for model monitoring job.
Parameters | |
---|---|
Name | Description |
cron |
str
Required. Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled runs. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: "CRON_TZ=${IANA_TIME_ZONE}" or "TZ=${IANA_TIME_ZONE}". The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, "CRON_TZ=America/New_York 1 * * * *", or "TZ=America/New_York 1 * * * *". |
target_dataset |
objective.MonitoringInput
Required. The target dataset for analysis. |
display_name |
str
Optional. The user-defined name of the Schedule. The name can be up to 128 characters long and can be consist of any UTF-8 characters. Display name of the Schedule. |
model_monitoring_job_display_name |
str
Optional. The user-defined name of the ModelMonitoringJob. The name can be up to 128 characters long and can be consist of any UTF-8 characters. Display name of the ModelMonitoringJob. |
start_time |
timestamp_pb2.Timestamp
Optional. Timestamp after which the first run can be scheduled. Default to Schedule create time if not specified. |
end_time |
timestamp_pb2.Timestamp
Optional. Timestamp after which no new runs can be scheduled. If specified, The schedule will be completed when the end_time is reached. If not specified, new runs will keep getting scheduled until this Schedule is paused or deleted. Already scheduled runs will be allowed to complete. Unset if not specified. |
tabular_objective_spec |
objective.TabularObjective
Optional. The tabular monitoring objective spec. If not set, the default tabular objective spec in ModelMonitor will be used. You must either set here or set the default one in the ModelMonitor. |
baseline_dataset |
objective.MonitoringInput
Optional. The baseline dataset for monitoring job. If not set, the training dataset in ModelMonitor will be used as baseline dataset. |
output_spec |
output.OutputSpec
Optional. The monitoring metrics/logs export spec. If not set, will use the default output_spec defined in ModelMonitor. |
notification_spec |
notification.NotificationSpec
Optional. The notification spec for monitoring result. If not set, will use the default notification_spec defined in ModelMonitor. |
explanation_spec |
explanation.ExplanationSpec
Optional. The explanation spec for feature attribution monitoring. If not set, will use the default explanation_spec defined in ModelMonitor. |
Returns | |
---|---|
Type | Description |
Schedule |
The created schedule. |
delete
delete(force: bool = False, sync: bool = True) -> None
Force delete the model monitor.
Parameters | |
---|---|
Name | Description |
force |
bool
Required. If force is set to True, all schedules on this ModelMonitor will be deleted first. Default is False. |
sync |
bool
Whether to execute this method synchronously. If False, this method will be executed in concurrent Future and any downstream object will be immediately returned and synced when the Future has completed. Default is True. |
delete_model_monitoring_job
delete_model_monitoring_job(model_monitoring_job_name: str) -> None
Delete a model monitoring job.
Parameter | |
---|---|
Name | Description |
model_monitoring_job_name |
str
Required. The resource name of the model monitoring job that needs to be deleted. Format: |
delete_schedule
delete_schedule(schedule_name: str) -> None
Deletes an existing Schedule.
Parameter | |
---|---|
Name | Description |
schedule_name |
str
Required. The resource name of schedule that needs to be deleted. Format: |
get_model_monitoring_job
get_model_monitoring_job(
model_monitoring_job_name: str,
) -> vertexai.resources.preview.ml_monitoring.model_monitors.ModelMonitoringJob
Get the specified ModelMonitoringJob.
Parameter | |
---|---|
Name | Description |
model_monitoring_job_name |
str
Required. The resource name of the ModelMonitoringJob that is needed. Format: |
Returns | |
---|---|
Type | Description |
ModelMonitoringJob |
The model monitoring job get. |
get_schedule
get_schedule(
schedule_name: str,
) -> google.cloud.aiplatform_v1beta1.types.schedule.Schedule
Gets an existing Schedule.
Parameter | |
---|---|
Name | Description |
schedule_name |
str
Required. The resource name of schedule that needs to be fetched. Format: |
Returns | |
---|---|
Type | Description |
Schedule |
The schedule requested. |
get_schema
get_schema() -> (
google.cloud.aiplatform_v1beta1.types.model_monitor.ModelMonitoringSchema
)
Get the schema of the model monitor.
list
list(
filter: typing.Optional[str] = None,
order_by: typing.Optional[str] = None,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
parent: typing.Optional[str] = None,
) -> typing.List[google.cloud.aiplatform.base.VertexAiResourceNoun]
List all instances of this Vertex AI Resource.
Example Usage:
aiplatform.BatchPredictionJobs.list( filter='state="JOB_STATE_SUCCEEDED" AND display_name="my_job"', )
aiplatform.Model.list(order_by="create_time desc, display_name")
Parameters | |
---|---|
Name | Description |
filter |
str
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported. |
order_by |
str
Optional. A comma-separated list of fields to order by, sorted in ascending order. Use "desc" after a field name for descending. Supported fields: |
project |
str
Optional. Project to retrieve list from. If not set, project set in aiplatform.init will be used. |
location |
str
Optional. Location to retrieve list from. If not set, location set in aiplatform.init will be used. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to retrieve list. Overrides credentials set in aiplatform.init. |
parent |
str
Optional. The parent resource name if any to retrieve list from. |
list_jobs
list_jobs(
page_size: typing.Optional[int] = None, page_token: typing.Optional[str] = None
) -> ListJobsResponse.list_jobs
List ModelMonitoringJobs.
Parameters | |
---|---|
Name | Description |
page_size |
int
Optional. The standard page list size. |
page_token |
str
Optional. A page token received from a previous call. |
Returns | |
---|---|
Type | Description |
ListJobsResponse.list_jobs |
The list model monitoring jobs responses. |
list_schedules
list_schedules(
filter: typing.Optional[str] = None,
page_size: typing.Optional[int] = None,
page_token: typing.Optional[str] = None,
) -> ListSchedulesResponse.list_schedules
List Schedules.
Parameters | |
---|---|
Name | Description |
filter |
str
Optional. Lists the Schedules that match the filter expression. The following fields are supported: - |
page_size |
int
Optional. The standard page list size. |
page_token |
str
Optional. A page token received from a previous call. |
Returns | |
---|---|
Type | Description |
MetricsSearchResponse |
The model monitoring stats results. |
pause_schedule
pause_schedule(schedule_name: str) -> None
Pauses an existing Schedule.
Parameter | |
---|---|
Name | Description |
schedule_name |
str
Required. The resource name of schedule that needs to be paused. Format: |
resume_schedule
resume_schedule(schedule_name: str) -> None
Resumes an existing Schedule.
Parameter | |
---|---|
Name | Description |
schedule_name |
str
Required. The resource name of schedule that needs to be resumed. Format: |
run
run(
target_dataset: vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput,
display_name: typing.Optional[str] = None,
model_monitoring_job_id: typing.Optional[str] = None,
sync: typing.Optional[bool] = True,
tabular_objective_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.TabularObjective
] = None,
baseline_dataset: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput
] = None,
output_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.output.OutputSpec
] = None,
notification_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.notification.NotificationSpec
] = None,
explanation_spec: typing.Optional[
google.cloud.aiplatform_v1beta1.types.explanation.ExplanationSpec
] = None,
) -> vertexai.resources.preview.ml_monitoring.model_monitors.ModelMonitoringJob
Creates a new ModelMonitoringJob.
Parameters | |
---|---|
Name | Description |
target_dataset |
objective.MonitoringInput
Required. The target dataset for analysis. |
display_name |
str
Optional. The user-defined name of the ModelMonitoringJob. The name can be up to 128 characters long and can comprise any UTF-8 character. Display name of the ModelMonitoringJob. |
model_monitoring_job_id |
str
Optional. The unique ID of the model monitoring job run, which will become the final component of the model monitoring job resource name. The maximum length is 63 characters, and valid characters are /^a-z?$/. If not specified, it will be generated by Vertex AI. |
sync |
bool
Whether to execute this method synchronously. If False, this method will be executed in concurrent Future and any downstream object will be immediately returned and synced when the Future has completed. Default is True. |
tabular_objective_spec |
objective.TabularObjective
Optional. The tabular monitoring objective spec for the model monitoring job. |
baseline_dataset |
objective.MonitoringInput
Optional. The baseline dataset for monitoring job. If not set, the training dataset in ModelMonitor will be used as baseline dataset. |
output_spec |
output.OutputSpec
Optional. The monitoring metrics/logs export spec. If not set, will use the default output_spec defined in ModelMonitor. |
notification_spec |
notification.NotificationSpec
Optional. The notification spec for monitoring result. If not set, will use the default notification_spec defined in ModelMonitor. |
explanation_config |
explanation.ExplanationSpec
Optional. The explanation spec for feature attribution monitoring. If not set, will use the default explanation_spec defined in ModelMonitor. |
Returns | |
---|---|
Type | Description |
ModelMonitoringJob |
The model monitoring job that was created. |
search_alerts
search_alerts(
stats_name: typing.Optional[str] = None,
objective_type: typing.Optional[str] = None,
model_monitoring_job_name: typing.Optional[str] = None,
start_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
end_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
page_size: typing.Optional[int] = None,
page_token: typing.Optional[str] = None,
) -> typing.Dict[str, typing.Any]
Search ModelMonitoringAlerts.
Parameters | |
---|---|
Name | Description |
stats_name |
str
Optional. The stats name filter for the search, if not set, all stats will be returned. For tabular models, provide the name of the feature to return alerts from. |
objective_type |
str
Optional. Return alerts from one of the supported monitoring objectives: |
model_monitoring_job_name |
str
Optional. The resource name of a particular model monitoring job that the user wants to search metrics result from. Format: |
start_time |
timestamp_pb2.Timestamp
Optional. Inclusive start of the time interval for which alerts should be returned. |
end_time |
timestamp_pb2.Timestamp
Optional. Exclusive end of the time interval for which alerts should be returned. |
page_size |
int
Optional. The standard page list size. |
page_token |
str
Optional. A page token received from a previous call. |
Returns | |
---|---|
Type | Description |
AlertsSearchResponse |
The model monitoring alerts results. |
search_metrics
search_metrics(
stats_name: typing.Optional[str] = None,
objective_type: typing.Optional[str] = None,
model_monitoring_job_name: typing.Optional[str] = None,
schedule_name: typing.Optional[str] = None,
algorithm: typing.Optional[str] = None,
start_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
end_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
page_size: typing.Optional[int] = None,
page_token: typing.Optional[str] = None,
) -> MetricsSearchResponse.monitoring_stats
Search ModelMonitoringStats.
Parameters | |
---|---|
Name | Description |
stats_name |
str
Optional. The stats name filter for the search, if not set, all stats will be returned. For tabular model it's the feature name. |
objective_type |
str
Optional. One of the supported monitoring objectives: |
model_monitoring_job_name |
str
Optional. The resource name of a particular model monitoring job that the user wants to search metrics result from. Format: |
schedule_name |
str
Optional. The resource name of a particular model monitoring schedule that the user wants to search metrics result from. Format: |
algorithm |
str
Optional. The algorithm type filter for the search, eg: jensen_shannon_divergence, l_infinity. |
start_time |
timestamp_pb2.Timestamp
Optional. Inclusive start of the time interval for which results should be returned. |
end_time |
timestamp_pb2.Timestamp
Optional. Exclusive end of the time interval for which results should be returned. |
page_size |
int
Optional. The standard page list size. |
page_token |
str
Optional. A page token received from a previous call. |
Returns | |
---|---|
Type | Description |
MetricsSearchResponse |
The model monitoring stats results. |
show_feature_attribution_drift_stats
show_feature_attribution_drift_stats(model_monitoring_job_name: str) -> None
The method to visualize the feature attribution drift result from a model monitoring job as a histogram chart and a table.
Parameter | |
---|---|
Name | Description |
model_monitoring_job_name |
str
Required. The resource name of model monitoring job to show the feature attribution drift stats from. Format: |
show_feature_drift_stats
show_feature_drift_stats(model_monitoring_job_name: str) -> None
The method to visualize the feature drift result from a model monitoring job as a histogram chart and a table.
Parameter | |
---|---|
Name | Description |
model_monitoring_job_name |
str
Required. The resource name of model monitoring job to show the drift stats from. Format: |
show_output_drift_stats
show_output_drift_stats(model_monitoring_job_name: str) -> None
The method to visualize the prediction output drift result from a model monitoring job as a histogram chart and a table.
Parameter | |
---|---|
Name | Description |
model_monitoring_job_name |
str
Required. The resource name of model monitoring job to show the drift stats from. Format: |
to_dict
to_dict() -> typing.Dict[str, typing.Any]
Returns the resource proto as a dictionary.
update
update(
display_name: typing.Optional[str] = None,
training_dataset: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput
] = None,
model_monitoring_schema: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.schema.ModelMonitoringSchema
] = None,
tabular_objective_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.TabularObjective
] = None,
output_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.output.OutputSpec
] = None,
notification_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.notification.NotificationSpec
] = None,
explanation_spec: typing.Optional[
google.cloud.aiplatform_v1beta1.types.explanation.ExplanationSpec
] = None,
) -> vertexai.resources.preview.ml_monitoring.model_monitors.ModelMonitor
Updates an existing ModelMonitor.
Parameters | |
---|---|
Name | Description |
display_name |
str
Optional. The user-defined name of the ModelMonitor. The name can be up to 128 characters long and can comprise any UTF-8 character. Display name of the ModelMonitor. |
training_dataset |
objective.MonitoringInput
Optional. Training dataset used to train the model. It can serve as a baseline dataset to identify changes in production. |
model_monitoring_schema |
schema.ModelMonitoringSchema
Optional. The Monitoring Schema specifies the model's features, prediction outputs and ground truth properties. It is used to extract pertinent data from the dataset and to process features based on their properties. Make sure that the schema aligns with your dataset, if it does not, Vertex AI will be unable to extract data form the dataset. |
tabular_objective_spec |
objective.TabularObjective
Optional. The default tabular monitoring objective spec for the model monitor. It can be overriden in the ModelMonitoringJob objective spec. |
output_spec |
output.OutputSpec
Optional. The default monitoring metrics/logs export spec, it can be overriden in the ModelMonitoringJob output spec. |
notification_spec |
notification.NotificationSpec
Optional. The default notification spec for monitoring result. It can be overriden in the ModelMonitoringJob notification spec. |
explanation_spec |
explanation.ExplanationSpec
Optional. The default explanation spec for feature attribution monitoring. It can be overriden in the ModelMonitoringJob explanation spec. |
Returns | |
---|---|
Type | Description |
ModelMonitor |
The updated model monitor. |
update_schedule
update_schedule(
schedule_name: str,
display_name: typing.Optional[str] = None,
model_monitoring_job_display_name: typing.Optional[str] = None,
cron: typing.Optional[str] = None,
baseline_dataset: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput
] = None,
target_dataset: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.MonitoringInput
] = None,
tabular_objective_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.objective.TabularObjective
] = None,
output_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.output.OutputSpec
] = None,
notification_spec: typing.Optional[
vertexai.resources.preview.ml_monitoring.spec.notification.NotificationSpec
] = None,
explanation_spec: typing.Optional[
google.cloud.aiplatform_v1beta1.types.explanation.ExplanationSpec
] = None,
end_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
) -> google.cloud.aiplatform_v1beta1.types.schedule.Schedule
Updates an existing Schedule.
Parameters | |
---|---|
Name | Description |
schedule_name |
str
Required. The resource name of schedule that needs to be updated. Format: |
display_name |
str
Optional. The user-defined name of the Schedule. The name can be up to 128 characters long and can be consist of any UTF-8 characters. Display name of the Schedule. |
model_monitoring_job_display_name |
str
Optional. The user-defined display name of the ModelMonitoringJob that needs to be updated. |
cron |
str
Optional. Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled runs. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: "CRON_TZ=${IANA_TIME_ZONE}" or "TZ=${IANA_TIME_ZONE}". The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, "CRON_TZ=America/New_York 1 * * * *", or "TZ=America/New_York 1 * * * *". |
baseline_dataset |
objective.MonitoringInput
Optional. The baseline dataset for monitoring job. |
target_dataset |
objective.MonitoringInput
Optional. The target dataset for analysis. |
tabular_objective_spec |
objective.TabularObjective
Optional. The tabular monitoring objective spec. |
output_spec |
output.OutputSpec
Optional. The monitoring metrics/logs export spec. |
notification_spec |
notification.NotificationSpec
Optional. The notification spec for monitoring result. |
explanation_spec |
explanation.ExplanationSpec
Optional. The explanation spec for feature attribution monitoring. |
end_time |
timestamp_pb2.Timestamp
Optional. Timestamp after which no new runs can be scheduled. |
Returns | |
---|---|
Type | Description |
Schedule |
The updated schedule. |
wait
wait()
Helper method that blocks until all futures are complete.