- 1.77.0 (latest)
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
ModelMonitoringSchema(
feature_fields: typing.MutableSequence[
vertexai.resources.preview.ml_monitoring.spec.schema.FieldSchema
],
ground_truth_fields: typing.Optional[
typing.MutableSequence[
vertexai.resources.preview.ml_monitoring.spec.schema.FieldSchema
]
] = None,
prediction_fields: typing.Optional[
typing.MutableSequence[
vertexai.resources.preview.ml_monitoring.spec.schema.FieldSchema
]
] = None,
)
Initializer for ModelMonitoringSchema.
Parameters |
|
---|---|
Name | Description |
feature_fields |
MutableSequence[FieldSchema]
Required. Feature names of the model. Vertex AI will try to match the features from your dataset as follows: * For 'csv' files, the header names are required, and we will extract thecorresponding feature values when the header names align with the feature names. * For 'jsonl' files, we will extract the corresponding feature values if the key names match the feature names. Note: Nested features are not supported, so please ensure your features are flattened. Ensure the feature values are scalar or an array of scalars. * For 'bigquery' dataset, we will extract the corresponding feature values if the column names match the feature names. Note: The column type can be a scalar or an array of scalars. STRUCT or JSON types are not supported. You may use SQL queries to select or aggregate the relevant features from your original table. However, ensure that the 'schema' of the query results meets our requirements. * For the Vertex AI Endpoint Request Response Logging table or Vertex AI Batch Prediction Job results. If the prediction instance format is an array, ensure that the sequence in |
ground_truth_fields |
MutableSequence[FieldSchema]
Optional. Target /ground truth names of the model. |
prediction_fields |
MutableSequence[FieldSchema]
Optional. Prediction output names of the model. The requirements are the same as the |
Methods
to_json
to_json(output_dir: typing.Optional[str] = None) -> str
Transform ModelMonitoringSchema to json format.
Parameter | |
---|---|
Name | Description |
output_dir |
str
Optional. The output directory that the transformed json file would be put into. |