- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
TextEmbeddingModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Creates a LanguageModel.
This constructor should not be called directly.
Use LanguageModel.from_pretrained(model_name=...)
instead.
Parameters |
|
---|---|
Name | Description |
model_id |
str
Identifier of a Vertex LLM. Example: "text-bison@001" |
endpoint_name |
typing.Optional[str]
Vertex Endpoint resource name for the model |
Methods
deploy_tuned_model
deploy_tuned_model(
tuned_model_name: str,
machine_type: typing.Optional[str] = None,
accelerator: typing.Optional[str] = None,
accelerator_count: typing.Optional[int] = None,
) -> vertexai.language_models._language_models._LanguageModel
Loads the specified tuned language model.
Parameters | |
---|---|
Name | Description |
machine_type |
typing.Optional[str]
Machine type. E.g., "a2-highgpu-1g". See also: https://cloud.google.com/vertex-ai/docs/training/configure-compute. |
accelerator |
typing.Optional[str]
Kind of accelerator. E.g., "NVIDIA_TESLA_A100". See also: https://cloud.google.com/vertex-ai/docs/training/configure-compute. |
accelerator_count |
typing.Optional[int]
Count of accelerators. |
from_pretrained
from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T
Loads a _ModelGardenModel.
Parameter | |
---|---|
Name | Description |
model_name |
str
Name of the model. |
Exceptions | |
---|---|
Type | Description |
ValueError |
If model_name is unknown. |
ValueError |
If model does not support this class. |
get_embeddings
get_embeddings(
texts: typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]],
*,
auto_truncate: bool = True,
output_dimensionality: typing.Optional[int] = None
) -> typing.List[vertexai.language_models.TextEmbedding]
Calculates embeddings for the given texts.
Parameter | |
---|---|
Name | Description |
texts |
typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]]
A list of texts or |
get_embeddings_async
get_embeddings_async(
texts: typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]],
*,
auto_truncate: bool = True,
output_dimensionality: typing.Optional[int] = None
) -> typing.List[vertexai.language_models.TextEmbedding]
Asynchronously calculates embeddings for the given texts.
Parameter | |
---|---|
Name | Description |
texts |
typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]]
A list of texts or |
get_tuned_model
get_tuned_model(*args, **kwargs)
Loads the specified tuned language model.
list_tuned_model_names
list_tuned_model_names() -> typing.Sequence[str]
Lists the names of tuned models.
tune_model
tune_model(
*,
training_data: typing.Optional[str] = None,
corpus_data: typing.Optional[str] = None,
queries_data: typing.Optional[str] = None,
test_data: typing.Optional[str] = None,
validation_data: typing.Optional[str] = None,
batch_size: typing.Optional[int] = None,
train_steps: typing.Optional[int] = None,
tuned_model_location: typing.Optional[str] = None,
model_display_name: typing.Optional[str] = None,
task_type: typing.Optional[str] = None,
machine_type: typing.Optional[str] = None,
accelerator: typing.Optional[str] = None,
accelerator_count: typing.Optional[int] = None
) -> vertexai.language_models._language_models._LanguageModelTuningJob
Tunes a model based on training data.
This method launches and returns an asynchronous model tuning job. Usage:
tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete
Exceptions | |
---|---|
Type | Description |
ValueError |
If the "tuned_model_location" value is not supported |
RuntimeError |
If the model does not support tuning |