Class ChatModel (1.36.3)

ChatModel(model_id: str, endpoint_name: typing.Optional[str] = None)

ChatModel represents a language model that is capable of chat.

Examples::

chat_model = ChatModel.from_pretrained("chat-bison@001")

chat = chat_model.start_chat(
    context="My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.",
    examples=[
        InputOutputTextPair(
            input_text="Who do you work for?",
            output_text="I work for Ned.",
        ),
        InputOutputTextPair(
            input_text="What do I like?",
            output_text="Ned likes watching movies.",
        ),
    ],
    temperature=0.3,
)

chat.send_message("Do you know any cool events this weekend?")

Methods

ChatModel

ChatModel(model_id: str, endpoint_name: typing.Optional[str] = None)

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=...) instead.

Parameters
NameDescription
model_id str

Identifier of a Vertex LLM. Example: "text-bison@001"

endpoint_name typing.Optional[str]

Vertex Endpoint resource name for the model

from_pretrained

from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T

Loads a _ModelGardenModel.

Parameter
NameDescription
model_name str

Name of the model.

Exceptions
TypeDescription
ValueErrorIf model_name is unknown.
ValueErrorIf model does not support this class.

get_tuned_model

get_tuned_model(
    tuned_model_name: str,
) -> vertexai.language_models._language_models._LanguageModel

Loads the specified tuned language model.

list_tuned_model_names

list_tuned_model_names() -> typing.Sequence[str]

Lists the names of tuned models.

start_chat

start_chat(
    *,
    context: typing.Optional[str] = None,
    examples: typing.Optional[
        typing.List[vertexai.language_models.InputOutputTextPair]
    ] = None,
    max_output_tokens: typing.Optional[int] = None,
    temperature: typing.Optional[float] = None,
    top_k: typing.Optional[int] = None,
    top_p: typing.Optional[float] = None,
    message_history: typing.Optional[
        typing.List[vertexai.language_models.ChatMessage]
    ] = None,
    stop_sequences: typing.Optional[typing.List[str]] = None
) -> vertexai.language_models.ChatSession

Starts a chat session with the model.

tune_model

tune_model(
    training_data: typing.Union[str, pandas.core.frame.DataFrame],
    *,
    train_steps: typing.Optional[int] = None,
    learning_rate_multiplier: typing.Optional[float] = None,
    tuning_job_location: typing.Optional[str] = None,
    tuned_model_location: typing.Optional[str] = None,
    model_display_name: typing.Optional[str] = None,
    default_context: typing.Optional[str] = None,
    accelerator_type: typing.Optional[typing.Literal["TPU", "GPU"]] = None,
    tuning_evaluation_spec: typing.Optional[TuningEvaluationSpec] = None
) -> _LanguageModelTuningJob

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage:

tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.get_tuned_model()  # Blocks until tuning is complete
Parameter
NameDescription
training_data typing.Union[str, pandas.core.frame.DataFrame]

A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

Exceptions
TypeDescription
ValueErrorIf the "tuning_job_location" value is not supported
ValueErrorIf the "tuned_model_location" value is not supported
RuntimeErrorIf the model does not support tuning
AttributeErrorIf any attribute in the "tuning_evaluation_spec" is not supported