- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
Classes for working with language models.
Classes
ChatModel
ChatModel(model_id: str, endpoint_name: Optional[str] = None)
ChatModel represents a language model that is capable of chat.
.. rubric:: Examples
chat_model = ChatModel.from_pretrained("chat-bison@001")
chat = chat_model.start_chat( context="My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.", examples=[ InputOutputTextPair( input_text="Who do you work for?", output_text="I work for Ned.", ), InputOutputTextPair( input_text="What do I like?", output_text="Ned likes watching movies.", ), ], temperature=0.3, )
chat.send_message("Do you know any cool events this weekend?")
ChatSession
ChatSession(
model: vertexai.language_models._language_models.ChatModel,
context: Optional[str] = None,
examples: Optional[
List[vertexai.language_models._language_models.InputOutputTextPair]
] = None,
max_output_tokens: int = 128,
temperature: float = 0.0,
top_k: int = 40,
top_p: float = 0.95,
)
ChatSession represents a chat session with a language model.
Within a chat session, the model keeps context and remembers the previous conversation.
InputOutputTextPair
InputOutputTextPair(input_text: str, output_text: str)
InputOutputTextPair represents a pair of input and output texts.
TextEmbedding
TextEmbedding(values: List[float], _prediction_response: Optional[Any] = None)
Contains text embedding vector.
TextEmbeddingModel
TextEmbeddingModel(model_id: str, endpoint_name: Optional[str] = None)
TextEmbeddingModel converts text into a vector of floating-point numbers.
.. rubric:: Examples
Getting embedding:
model = TextEmbeddingModel.from_pretrained("embedding-gecko@001") embeddings = model.get_embeddings(["What is life?"]) for embedding in embeddings: vector = embedding.values print(len(vector))
TextGenerationModel
TextGenerationModel(model_id: str, endpoint_name: Optional[str] = None)
TextGenerationModel represents a general language model.
.. rubric:: Examples
Getting answers:
model = TextGenerationModel.from_pretrained("text-bison@001") model.predict("What is life?")
TextGenerationResponse
TextGenerationResponse(text: str, _prediction_response: Any)
TextGenerationResponse represents a response of a language model.