- 1.77.0 (latest)
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
HyperparameterTuningJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.
Attributes
Name | Description |
name |
str
Output only. Resource name of the HyperparameterTuningJob. |
display_name |
str
Required. The display name of the HyperparameterTuningJob. The name can be up to 128 characters long and can be consist of any UTF-8 characters. |
study_spec |
google.cloud.aiplatform_v1.types.StudySpec
Required. Study configuration of the HyperparameterTuningJob. |
max_trial_count |
int
Required. The desired total number of Trials. |
parallel_trial_count |
int
Required. The desired number of Trials to run in parallel. |
max_failed_trial_count |
int
The number of failed Trials that need to be seen before failing the HyperparameterTuningJob. If set to 0, AI Platform decides how many Trials must fail before the whole job fails. |
trial_job_spec |
google.cloud.aiplatform_v1.types.CustomJobSpec
Required. The spec of a trial job. The same spec applies to the CustomJobs created in all the trials. |
trials |
Sequence[google.cloud.aiplatform_v1.types.Trial]
Output only. Trials of the HyperparameterTuningJob. |
state |
google.cloud.aiplatform_v1.types.JobState
Output only. The detailed state of the job. |
create_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Time when the HyperparameterTuningJob was created. |
start_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Time when the HyperparameterTuningJob for the first time entered the ``JOB_STATE_RUNNING`` state. |
end_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Time when the HyperparameterTuningJob entered any of the following states: ``JOB_STATE_SUCCEEDED``, ``JOB_STATE_FAILED``, ``JOB_STATE_CANCELLED``. |
update_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Time when the HyperparameterTuningJob was most recently updated. |
error |
google.rpc.status_pb2.Status
Output only. Only populated when job's state is JOB_STATE_FAILED or JOB_STATE_CANCELLED. |
labels |
Sequence[google.cloud.aiplatform_v1.types.HyperparameterTuningJob.LabelsEntry]
The labels with user-defined metadata to organize HyperparameterTuningJobs. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. |
encryption_spec |
google.cloud.aiplatform_v1.types.EncryptionSpec
Customer-managed encryption key options for a HyperparameterTuningJob. If this is set, then all resources created by the HyperparameterTuningJob will be encrypted with the provided encryption key. |
Inheritance
builtins.object > proto.message.Message > HyperparameterTuningJobClasses
LabelsEntry
LabelsEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The abstract base class for a message.
Name | Description |
kwargs |
dict
Keys and values corresponding to the fields of the message. |
mapping |
Union[dict, `.Message`]
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields |
Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |