Reference documentation and code samples for the Cloud AutoML V1beta1 Client class ModelEvaluation.
Evaluation results of a model.
Generated from protobuf message google.cloud.automl.v1beta1.ModelEvaluation
Namespace
Google \ Cloud \ AutoMl \ V1beta1Methods
__construct
Constructor.
Parameters | |
---|---|
Name | Description |
data |
array
Optional. Data for populating the Message object. |
↳ classification_evaluation_metrics |
Google\Cloud\AutoMl\V1beta1\ClassificationEvaluationMetrics
Model evaluation metrics for image, text, video and tables classification. Tables problem is considered a classification when the target column is CATEGORY DataType. |
↳ regression_evaluation_metrics |
Google\Cloud\AutoMl\V1beta1\RegressionEvaluationMetrics
Model evaluation metrics for Tables regression. Tables problem is considered a regression when the target column has FLOAT64 DataType. |
↳ translation_evaluation_metrics |
Google\Cloud\AutoMl\V1beta1\TranslationEvaluationMetrics
Model evaluation metrics for translation. |
↳ image_object_detection_evaluation_metrics |
Google\Cloud\AutoMl\V1beta1\ImageObjectDetectionEvaluationMetrics
Model evaluation metrics for image object detection. |
↳ video_object_tracking_evaluation_metrics |
Google\Cloud\AutoMl\V1beta1\VideoObjectTrackingEvaluationMetrics
Model evaluation metrics for video object tracking. |
↳ text_sentiment_evaluation_metrics |
Google\Cloud\AutoMl\V1beta1\TextSentimentEvaluationMetrics
Evaluation metrics for text sentiment models. |
↳ text_extraction_evaluation_metrics |
Google\Cloud\AutoMl\V1beta1\TextExtractionEvaluationMetrics
Evaluation metrics for text extraction models. |
↳ name |
string
Output only. Resource name of the model evaluation. Format: |
↳ annotation_spec_id |
string
Output only. The ID of the annotation spec that the model evaluation applies to. The The ID is empty for the overall model evaluation. For Tables annotation specs in the dataset do not exist and this ID is always not set, but for CLASSIFICATION prediction_type-s the display_name field is used. |
↳ display_name |
string
Output only. The value of display_name at the moment when the model was trained. Because this field returns a value at model training time, for different models trained from the same dataset, the values may differ, since display names could had been changed between the two model's trainings. For Tables CLASSIFICATION prediction_type-s distinct values of the target column at the moment of the model evaluation are populated here. The display_name is empty for the overall model evaluation. |
↳ create_time |
Google\Protobuf\Timestamp
Output only. Timestamp when this model evaluation was created. |
↳ evaluated_example_count |
int
Output only. The number of examples used for model evaluation, i.e. for which ground truth from time of model creation is compared against the predicted annotations created by the model. For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is the total number of all examples used for evaluation. Otherwise, this is the count of examples that according to the ground truth were annotated by the annotation_spec_id. |
getClassificationEvaluationMetrics
Model evaluation metrics for image, text, video and tables classification.
Tables problem is considered a classification when the target column is CATEGORY DataType.
Returns | |
---|---|
Type | Description |
Google\Cloud\AutoMl\V1beta1\ClassificationEvaluationMetrics|null |
hasClassificationEvaluationMetrics
setClassificationEvaluationMetrics
Model evaluation metrics for image, text, video and tables classification.
Tables problem is considered a classification when the target column is CATEGORY DataType.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\AutoMl\V1beta1\ClassificationEvaluationMetrics
|
Returns | |
---|---|
Type | Description |
$this |
getRegressionEvaluationMetrics
Model evaluation metrics for Tables regression.
Tables problem is considered a regression when the target column has FLOAT64 DataType.
Returns | |
---|---|
Type | Description |
Google\Cloud\AutoMl\V1beta1\RegressionEvaluationMetrics|null |
hasRegressionEvaluationMetrics
setRegressionEvaluationMetrics
Model evaluation metrics for Tables regression.
Tables problem is considered a regression when the target column has FLOAT64 DataType.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\AutoMl\V1beta1\RegressionEvaluationMetrics
|
Returns | |
---|---|
Type | Description |
$this |
getTranslationEvaluationMetrics
Model evaluation metrics for translation.
Returns | |
---|---|
Type | Description |
Google\Cloud\AutoMl\V1beta1\TranslationEvaluationMetrics|null |
hasTranslationEvaluationMetrics
setTranslationEvaluationMetrics
Model evaluation metrics for translation.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\AutoMl\V1beta1\TranslationEvaluationMetrics
|
Returns | |
---|---|
Type | Description |
$this |
getImageObjectDetectionEvaluationMetrics
Model evaluation metrics for image object detection.
Returns | |
---|---|
Type | Description |
Google\Cloud\AutoMl\V1beta1\ImageObjectDetectionEvaluationMetrics|null |
hasImageObjectDetectionEvaluationMetrics
setImageObjectDetectionEvaluationMetrics
Model evaluation metrics for image object detection.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\AutoMl\V1beta1\ImageObjectDetectionEvaluationMetrics
|
Returns | |
---|---|
Type | Description |
$this |
getVideoObjectTrackingEvaluationMetrics
Model evaluation metrics for video object tracking.
Returns | |
---|---|
Type | Description |
Google\Cloud\AutoMl\V1beta1\VideoObjectTrackingEvaluationMetrics|null |
hasVideoObjectTrackingEvaluationMetrics
setVideoObjectTrackingEvaluationMetrics
Model evaluation metrics for video object tracking.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\AutoMl\V1beta1\VideoObjectTrackingEvaluationMetrics
|
Returns | |
---|---|
Type | Description |
$this |
getTextSentimentEvaluationMetrics
Evaluation metrics for text sentiment models.
Returns | |
---|---|
Type | Description |
Google\Cloud\AutoMl\V1beta1\TextSentimentEvaluationMetrics|null |
hasTextSentimentEvaluationMetrics
setTextSentimentEvaluationMetrics
Evaluation metrics for text sentiment models.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\AutoMl\V1beta1\TextSentimentEvaluationMetrics
|
Returns | |
---|---|
Type | Description |
$this |
getTextExtractionEvaluationMetrics
Evaluation metrics for text extraction models.
Returns | |
---|---|
Type | Description |
Google\Cloud\AutoMl\V1beta1\TextExtractionEvaluationMetrics|null |
hasTextExtractionEvaluationMetrics
setTextExtractionEvaluationMetrics
Evaluation metrics for text extraction models.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\AutoMl\V1beta1\TextExtractionEvaluationMetrics
|
Returns | |
---|---|
Type | Description |
$this |
getName
Output only. Resource name of the model evaluation.
Format:
projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}
Returns | |
---|---|
Type | Description |
string |
setName
Output only. Resource name of the model evaluation.
Format:
projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}
Parameter | |
---|---|
Name | Description |
var |
string
|
Returns | |
---|---|
Type | Description |
$this |
getAnnotationSpecId
Output only. The ID of the annotation spec that the model evaluation applies to. The The ID is empty for the overall model evaluation.
For Tables annotation specs in the dataset do not exist and this ID is always not set, but for CLASSIFICATION prediction_type-s the display_name field is used.
Returns | |
---|---|
Type | Description |
string |
setAnnotationSpecId
Output only. The ID of the annotation spec that the model evaluation applies to. The The ID is empty for the overall model evaluation.
For Tables annotation specs in the dataset do not exist and this ID is always not set, but for CLASSIFICATION prediction_type-s the display_name field is used.
Parameter | |
---|---|
Name | Description |
var |
string
|
Returns | |
---|---|
Type | Description |
$this |
getDisplayName
Output only. The value of display_name at the moment when the model was trained. Because this field returns a value at model training time, for different models trained from the same dataset, the values may differ, since display names could had been changed between the two model's trainings.
For Tables CLASSIFICATION prediction_type-s distinct values of the target column at the moment of the model evaluation are populated here. The display_name is empty for the overall model evaluation.
Returns | |
---|---|
Type | Description |
string |
setDisplayName
Output only. The value of display_name at the moment when the model was trained. Because this field returns a value at model training time, for different models trained from the same dataset, the values may differ, since display names could had been changed between the two model's trainings.
For Tables CLASSIFICATION prediction_type-s distinct values of the target column at the moment of the model evaluation are populated here. The display_name is empty for the overall model evaluation.
Parameter | |
---|---|
Name | Description |
var |
string
|
Returns | |
---|---|
Type | Description |
$this |
getCreateTime
Output only. Timestamp when this model evaluation was created.
Returns | |
---|---|
Type | Description |
Google\Protobuf\Timestamp|null |
hasCreateTime
clearCreateTime
setCreateTime
Output only. Timestamp when this model evaluation was created.
Parameter | |
---|---|
Name | Description |
var |
Google\Protobuf\Timestamp
|
Returns | |
---|---|
Type | Description |
$this |
getEvaluatedExampleCount
Output only. The number of examples used for model evaluation, i.e. for which ground truth from time of model creation is compared against the predicted annotations created by the model.
For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is the total number of all examples used for evaluation. Otherwise, this is the count of examples that according to the ground truth were annotated by the annotation_spec_id.
Returns | |
---|---|
Type | Description |
int |
setEvaluatedExampleCount
Output only. The number of examples used for model evaluation, i.e. for which ground truth from time of model creation is compared against the predicted annotations created by the model.
For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is the total number of all examples used for evaluation. Otherwise, this is the count of examples that according to the ground truth were annotated by the annotation_spec_id.
Parameter | |
---|---|
Name | Description |
var |
int
|
Returns | |
---|---|
Type | Description |
$this |
getMetrics
Returns | |
---|---|
Type | Description |
string |