Classificazione dei contenuti di un file Cloud Storage

Analizza un file archiviato in Google Cloud Storage e restituisce un elenco di categorie di contenuti applicabili al testo trovato nel documento.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Go

Per scoprire come installare e utilizzare la libreria client per Natural Language, consulta la pagina Librerie client di Natural Language. Per saperne di più, consulta la documentazione di riferimento dell'API Natural Language Go.

Per eseguire l'autenticazione in Natural Language, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


func classifyTextFromGCS(ctx context.Context, gcsURI string) (*languagepb.ClassifyTextResponse, error) {
	return client.ClassifyText(ctx, &languagepb.ClassifyTextRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
	})
}

Java

Per scoprire come installare e utilizzare la libreria client per Natural Language, consulta la pagina Librerie client di Natural Language. Per saperne di più, consulta la documentazione di riferimento dell'API Natural Language Java.

Per eseguire l'autenticazione in Natural Language, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  // Set the GCS content URI path
  Document doc =
      Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
  ClassifyTextRequest request = ClassifyTextRequest.newBuilder().setDocument(doc).build();
  // Detect categories in the given file
  ClassifyTextResponse response = language.classifyText(request);

  for (ClassificationCategory category : response.getCategoriesList()) {
    System.out.printf(
        "Category name : %s, Confidence : %.3f\n",
        category.getName(), category.getConfidence());
  }
}

Node.js

Per scoprire come installare e utilizzare la libreria client per Natural Language, consulta la pagina Librerie client di Natural Language. Per saperne di più, consulta la documentazione di riferimento dell'API Natural Language Node.js.

Per eseguire l'autenticazione in Natural Language, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

// Imports the Google Cloud client library.
const language = require('@google-cloud/language');

// Creates a client.
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Classifies text in the document
const [classification] = await client.classifyText({document});

console.log('Categories:');
classification.categories.forEach(category => {
  console.log(`Name: ${category.name}, Confidence: ${category.confidence}`);
});

PHP

Per scoprire come installare e utilizzare la libreria client per Natural Language, consulta la pagina Librerie client di Natural Language.

Per eseguire l'autenticazione in Natural Language, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

use Google\Cloud\Language\V1\ClassifyTextRequest;
use Google\Cloud\Language\V1\Client\LanguageServiceClient;
use Google\Cloud\Language\V1\Document;
use Google\Cloud\Language\V1\Document\Type;

/**
 * @param string $uri The cloud storage object to analyze (gs://your-bucket-name/your-object-name)
 */
function classify_text_from_file(string $uri): void
{
    $languageServiceClient = new LanguageServiceClient();

    // Create a new Document, pass GCS URI and set type to PLAIN_TEXT
    $document = (new Document())
        ->setGcsContentUri($uri)
        ->setType(Type::PLAIN_TEXT);

    // Call the analyzeSentiment function
    $request = (new ClassifyTextRequest())
        ->setDocument($document);
    $response = $languageServiceClient->classifyText($request);
    $categories = $response->getCategories();
    // Print document information
    foreach ($categories as $category) {
        printf('Category Name: %s' . PHP_EOL, $category->getName());
        printf('Confidence: %s' . PHP_EOL, $category->getConfidence());
        print(PHP_EOL);
    }
}

Python

Per scoprire come installare e utilizzare la libreria client per Natural Language, consulta la pagina Librerie client di Natural Language. Per saperne di più, consulta la documentazione di riferimento dell'API Natural Language Python.

Per eseguire l'autenticazione in Natural Language, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import language_v1


def sample_classify_text(gcs_content_uri):
    """
    Classifying Content in text file stored in Cloud Storage

    Args:
      gcs_content_uri Google Cloud Storage URI where the file content is located.
      e.g. gs://[Your Bucket]/[Path to File]
      The text file must include at least 20 words.
    """

    client = language_v1.LanguageServiceClient()

    # gcs_content_uri = 'gs://cloud-samples-data/language/classify-entertainment.txt'

    # Available types: PLAIN_TEXT, HTML
    type_ = language_v1.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": type_,
        "language": language,
    }

    response = client.classify_text(request={"document": document})
    # Loop through classified categories returned from the API
    for category in response.categories:
        # Get the name of the category representing the document.
        # See the predefined taxonomy of categories:
        # https://cloud.google.com/natural-language/docs/categories
        print(f"Category name: {category.name}")
        # Get the confidence. Number representing how certain the classifier
        # is that this category represents the provided text.
        print(f"Confidence: {category.confidence}")

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .