Analyser les sentiments

L'analyse des sentiments examine le texte donné et identifie l'opinion émotionnelle dominante dans le texte, en particulier pour déterminer si l'attitude de l'auteur est positive, négative ou neutre. L'analyse des sentiments est effectuée via la méthode analyzeSentiment. Pour plus d'informations sur les langues acceptées par l'API Natural Language, consultez la page Langues acceptées. Pour plus d'informations sur l'interprétation des valeurs de sentiment score et magnitude incluses dans l'analyse, consultez la section Interpréter les valeurs d'analyse des sentiments.

Cette section décrit plusieurs manières de détecter les sentiments exprimés dans un document. Vous devez envoyer une demande distincte pour chaque document.

Analyser les sentiments dans une chaîne

Voici un exemple d'analyse des sentiments sur une chaîne de texte envoyée directement à l'API Natural Language :

Protocole

Pour analyser les sentiments dans un document, envoyez une requête POST à la méthode REST documents:analyzeSentiment et fournissez le corps de requête approprié comme illustré dans l'exemple suivant.

L'exemple utilise la commande gcloud auth application-default print-access-token pour obtenir un jeton d'accès pour un compte de service configuré pour le projet à l'aide de gcloud CLI de Google Cloud Platform. Pour obtenir des instructions d'installation de la gcloud CLI et configurer un projet avec un compte de service, consultez le guide de démarrage rapide.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'encodingType': 'UTF8',
  'document': {
    'type': 'PLAIN_TEXT',
    'content': 'Enjoy your vacation!'
  }
}" "https://language.googleapis.com/v2/documents:analyzeSentiment"

Si vous ne spécifiez pas document.language_code, la langue est automatiquement détectée. Pour plus d'informations sur les langues acceptées par l'API Natural Language, consultez la page Langues acceptées. Pour en savoir plus sur la configuration du corps de la requête, reportez-vous à la documentation de référence sur Document.

Si la requête aboutit, le serveur renvoie un code d'état HTTP 200 OK et la réponse au format JSON :

{
  "documentSentiment": {
    "magnitude": 0.8,
    "score": 0.8
  },
  "language": "en",
  "sentences": [
    {
      "text": {
        "content": "Enjoy your vacation!",
        "beginOffset": 0
      },
      "sentiment": {
        "magnitude": 0.8,
        "score": 0.8
      }
    }
  ]
}

documentSentiment.score indique un sentiment positif avec une valeur supérieure à zéro, et un sentiment négatif avec une valeur inférieure à zéro.

gcloud

Reportez-vous à la commande analyze-sentiment pour obtenir tous les détails.

Pour effectuer une analyse des sentiments, utilisez gcloud CLI et utilisez l'option --content pour identifier le contenu à analyser :

gcloud ml language analyze-sentiment --content="Enjoy your vacation!"

Si la requête aboutit, le serveur renvoie une réponse au format JSON :

{
  "documentSentiment": {
    "magnitude": 0.8,
    "score": 0.8
  },
  "language": "en",
  "sentences": [
    {
      "text": {
        "content": "Enjoy your vacation!",
        "beginOffset": 0
      },
      "sentiment": {
        "magnitude": 0.8,
        "score": 0.8
      }
    }
  ]
}

documentSentiment.score indique un sentiment positif avec une valeur supérieure à zéro, et un sentiment négatif avec une valeur inférieure à zéro.

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Go.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	language "cloud.google.com/go/language/apiv2"
	"cloud.google.com/go/language/apiv2/languagepb"
)

// analyzeSentiment sends a string of text to the Cloud Natural Language API to
// assess the sentiment of the text.
func analyzeSentiment(w io.Writer, text string) error {
	ctx := context.Background()

	// Initialize client.
	client, err := language.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	resp, err := client.AnalyzeSentiment(ctx, &languagepb.AnalyzeSentimentRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})

	if err != nil {
		return fmt.Errorf("AnalyzeSentiment: %w", err)
	}
	fmt.Fprintf(w, "Response: %q\n", resp)

	return nil
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Java.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();
  AnalyzeSentimentResponse response = language.analyzeSentiment(doc);
  Sentiment sentiment = response.getDocumentSentiment();
  if (sentiment == null) {
    System.out.println("No sentiment found");
  } else {
    System.out.printf("Sentiment magnitude: %.3f\n", sentiment.getMagnitude());
    System.out.printf("Sentiment score: %.3f\n", sentiment.getScore());
  }
  return sentiment;
}

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Python.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import language_v2


def sample_analyze_sentiment(text_content: str = "I am so happy and joyful.") -> None:
    """
    Analyzes Sentiment in a string.

    Args:
      text_content: The text content to analyze.
    """

    client = language_v2.LanguageServiceClient()

    # text_content = 'I am so happy and joyful.'

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "content": text_content,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_sentiment(
        request={"document": document, "encoding_type": encoding_type}
    )
    # Get overall sentiment of the input document
    print(f"Document sentiment score: {response.document_sentiment.score}")
    print(f"Document sentiment magnitude: {response.document_sentiment.magnitude}")
    # Get sentiment for all sentences in the document
    for sentence in response.sentences:
        print(f"Sentence text: {sentence.text.content}")
        print(f"Sentence sentiment score: {sentence.sentiment.score}")
        print(f"Sentence sentiment magnitude: {sentence.sentiment.magnitude}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration pour C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour Ruby.

Analyser les sentiments depuis Cloud Storage

L'API Natural Language peut effectuer une analyse des sentiments directement sur un fichier situé dans Cloud Storage, ce qui se révèle plus pratique car il n'est pas nécessaire d'envoyer le contenu du fichier dans le corps de la requête.

Voici un exemple d'analyse des sentiments sur un fichier situé dans Cloud Storage.

Protocole

Pour analyser les sentiments d'un document stocké dans Cloud Storage, envoyez une requête POST à la méthode REST documents:analyzeSentiment et fournissez un corps de requête approprié avec le chemin d'accès au document comme illustré dans l'exemple suivant.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'document':{
    'type':'PLAIN_TEXT',
    'gcsContentUri':'gs://<bucket-name>/<object-name>'
  }
}" "https://language.googleapis.com/v2/documents:analyzeSentiment"

Si vous ne spécifiez pas document.language_code, la langue est automatiquement détectée. Pour plus d'informations sur les langues acceptées par l'API Natural Language, consultez la page Langues acceptées. Pour en savoir plus sur la configuration du corps de la requête, reportez-vous à la documentation de référence sur Document.

Si la requête aboutit, le serveur renvoie un code d'état HTTP 200 OK et la réponse au format JSON :

{
  "documentSentiment": {
    "magnitude": 0.8,
    "score": 0.8
  },
  "language_code": "en",
  "sentences": [
    {
      "text": {
        "content": "Enjoy your vacation!",
        "beginOffset": 0
      },
      "sentiment": {
        "magnitude": 0.8,
        "score": 0.8
      }
    }
  ]
}

documentSentiment.score indique un sentiment positif avec une valeur supérieure à zéro, et un sentiment négatif avec une valeur inférieure à zéro.

gcloud

Reportez-vous à la commande analyze-sentiment pour obtenir tous les détails.

Pour effectuer une analyse des sentiments sur un fichier dans Cloud Storage, utilisez l'outil de ligne de commande gcloud et utilisez l'indicateur --content-file pour identifier le chemin d'accès au contenu à analyser :

gcloud ml language analyze-sentiment --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME

Si la requête aboutit, le serveur renvoie une réponse au format JSON :

{
  "documentSentiment": {
    "magnitude": 0.8,
    "score": 0.8
  },
  "language": "en",
  "sentences": [
    {
      "text": {
        "content": "Enjoy your vacation!",
        "beginOffset": 0
      },
      "sentiment": {
        "magnitude": 0.8,
        "score": 0.8
      }
    }
  ]
}

documentSentiment.score indique un sentiment positif avec une valeur supérieure à zéro, et un sentiment négatif avec une valeur inférieure à zéro.

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Go.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


func analyzeSentimentFromGCS(ctx context.Context, gcsURI string) (*languagepb.AnalyzeSentimentResponse, error) {
	return client.AnalyzeSentiment(ctx, &languagepb.AnalyzeSentimentRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
	})
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Java.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc =
      Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
  AnalyzeSentimentResponse response = language.analyzeSentiment(doc);
  Sentiment sentiment = response.getDocumentSentiment();
  if (sentiment == null) {
    System.out.println("No sentiment found");
  } else {
    System.out.printf("Sentiment magnitude : %.3f\n", sentiment.getMagnitude());
    System.out.printf("Sentiment score : %.3f\n", sentiment.getScore());
  }
  return sentiment;
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Node.js.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Detects the sentiment of the document
const [result] = await client.analyzeSentiment({document});

const sentiment = result.documentSentiment;
console.log('Document sentiment:');
console.log(`  Score: ${sentiment.score}`);
console.log(`  Magnitude: ${sentiment.magnitude}`);

const sentences = result.sentences;
sentences.forEach(sentence => {
  console.log(`Sentence: ${sentence.text.content}`);
  console.log(`  Score: ${sentence.sentiment.score}`);
  console.log(`  Magnitude: ${sentence.sentiment.magnitude}`);
});

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Natural Language, consultez la page Bibliothèques clientes Natural Language. Pour en savoir plus, consultez la documentation de référence de l'API Natural Language Python.

Pour vous authentifier auprès de Natural Language, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import language_v2


def sample_analyze_sentiment(
    gcs_content_uri: str = "gs://cloud-samples-data/language/sentiment-positive.txt",
) -> None:
    """
    Analyzes Sentiment in text file stored in Cloud Storage.

    Args:
      gcs_content_uri: Google Cloud Storage URI where the file content is located.
        e.g. gs://[Your Bucket]/[Path to File]
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_sentiment(
        request={"document": document, "encoding_type": encoding_type}
    )
    # Get overall sentiment of the input document
    print(f"Document sentiment score: {response.document_sentiment.score}")
    print(f"Document sentiment magnitude: {response.document_sentiment.magnitude}")
    # Get sentiment for all sentences in the document
    for sentence in response.sentences:
        print(f"Sentence text: {sentence.text.content}")
        print(f"Sentence sentiment score: {sentence.sentiment.score}")
        print(f"Sentence sentiment magnitude: {sentence.sentiment.magnitude}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Natural Language pour Ruby.