Die Entitätsanalyse untersucht den gegebenen Text auf bekannte Entitäten (Eigennamen, zum Beispiel von Personen des öffentlichen Lebens, Sehenswürdigkeiten usw.) und gibt Informationen über diese Entitäten zurück. Die Entitätsanalyse erfolgt mit der Methode analyzeEntities
. Welche Entitätstypen von der Natural Language erkannt werden, finden Sie in der Dokumentation zu Entitäten. Informationen dazu, welche Sprachen von der Natural Language API unterstützt werden, finden Sie unter Sprachunterstützung.
In diesem Abschnitt werden verschiedene Möglichkeiten zum Erkennen von Entitäten in einem Dokument gezeigt. Für jedes Dokument muss eine separate Anfrage gesendet werden.
Entitäten in einem String analysieren
Hier ist ein Beispiel für die Durchführung einer Entitätsanalyse an einem Textstring, der direkt an die Cloud Natural Language API gesendet wird:
Protokoll
Zum Analysieren von Entitäten in einem Dokument senden Sie eine POST
-Anfrage an die REST-Methode documents:analyzeEntities
und geben den entsprechenden Anfragetext an, wie im folgenden Beispiel gezeigt.
Im Beispiel wird mithilfe des Befehls gcloud auth application-default print-access-token
ein Zugriffstoken für ein Dienstkonto abgerufen, das für das Projekt mit dem gcloud CLI der Google Cloud Platform eingerichtet wurde.
Eine Anleitung zum Installieren des gcloud-CLI und zum Einrichten eines Projekts mit einem Dienstkonto finden Sie in der Kurzanleitung.
curl -X POST \ -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \ -H "Content-Type: application/json; charset=utf-8" \ --data "{ 'encodingType': 'UTF8', 'document': { 'type': 'PLAIN_TEXT', 'content': 'President Trump will speak from the White House, located at 1600 Pennsylvania Ave NW, Washington, DC, on October 7.' } }" "https://language.googleapis.com/v2/documents:analyzeEntities"
Wenn Sie document.language_code
nicht angeben, wird die Sprache automatisch erkannt. Informationen dazu, welche Sprachen von der Natural Language API unterstützt werden, finden Sie unter Sprachunterstützung. Weitere Informationen zum Konfigurieren des Anfragetexts erhalten Sie in der Referenzdokumentation zu Document
.
Wenn die Anfrage erfolgreich ist, gibt der Server den HTTP-Statuscode 200 OK
und die Antwort im JSON-Format zurück:
{ "entities": [ { "name": "October 7", "type": "DATE", "metadata": { "month": "10", "day": "7" }, "mentions": [ { "text": { "content": "October 7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "mentions": [ { "text": { "content": "1600", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "mentions": [ { "text": { "content": "7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "locality": "Washington", "narrow_region": "District of Columbia", "street_name": "Pennsylvania Avenue Northwest", "street_number": "1600", "broad_region": "District of Columbia", "country": "US" }, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW", "beginOffset": -1 }, "type": "PROPER", "probability": 0.901 } ] }, { "name": "President", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "President", "beginOffset": -1 }, "type": "COMMON", "probability": 0.941 } ] }, { "name": "Trump", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "Trump", "beginOffset": -1 }, "type": "PROPER", "probability": 0.948 } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": -1 }, "type": "PROPER", "probability": 0.92 } ] }, { "name": "White House", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "White House", "beginOffset": -1 }, "type": "PROPER", "probability": 0.785 } ] } ], "languageCode": "en", "languageSupported": true }
Das Array entities
setzt sich aus Objekten vom Typ Entity
zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.
gcloud
Ausführliche Informationen finden Sie unter dem Befehl analyze-entities
.
Für eine Entitätsanalyse verwenden Sie die gcloud CLI. Nutzen Sie dabei das Flag --content
zur Identifizierung des zu analysierenden Inhalts:
gcloud ml language analyze-entities --content="President Trump will speak from the White House, located at 1600 Pennsylvania Ave NW, Washington, DC, on October 7."
Wenn die Anfrage erfolgreich ist, gibt der Server eine Antwort im JSON-Format zurück:
{ "entities": [ { "name": "Trump", "type": "PERSON", "metadata": { "mid": "/m/0cqt90", "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump" }, "salience": 0.7936003, "mentions": [ { "text": { "content": "Trump", "beginOffset": 10 }, "type": "PROPER" }, { "text": { "content": "President", "beginOffset": 0 }, "type": "COMMON" } ] }, { "name": "White House", "type": "LOCATION", "metadata": { "mid": "/m/081sq", "wikipedia_url": "https://en.wikipedia.org/wiki/White_House" }, "salience": 0.09172433, "mentions": [ { "text": { "content": "White House", "beginOffset": 36 }, "type": "PROPER" } ] }, { "name": "Pennsylvania Ave NW", "type": "LOCATION", "metadata": { "mid": "/g/1tgb87cq" }, "salience": 0.085507184, "mentions": [ { "text": { "content": "Pennsylvania Ave NW", "beginOffset": 65 }, "type": "PROPER" } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": { "mid": "/m/0rh6k", "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C." }, "salience": 0.029168168, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": 86 }, "type": "PROPER" } ] } { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "country": "US", "sublocality": "Fort Lesley J. McNair", "locality": "Washington", "street_name": "Pennsylvania Avenue Northwest", "broad_region": "District of Columbia", "narrow_region": "District of Columbia", "street_number": "1600" }, "salience": 0, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": 60 }, "type": "TYPE_UNKNOWN" } ] } } { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "salience": 0, "mentions": [ { "text": { "content": "1600", "beginOffset": 60 }, "type": "TYPE_UNKNOWN" } ] }, { "name": "October 7", "type": "DATE", "metadata": { "day": "7", "month": "10" }, "salience": 0, "mentions": [ { "text": { "content": "October 7", "beginOffset": 105 }, "type": "TYPE_UNKNOWN" } ] } { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "salience": 0, "mentions": [ { "text": { "content": "7", "beginOffset": 113 }, "type": "TYPE_UNKNOWN" } ] } ], "language": "en" }
Das Array entities
setzt sich aus Objekten vom Typ Entity
zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.
Go
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Go API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Java
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Java API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Node.js API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Python
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Python API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Weitere Sprachen
C#: Folgen Sie der Anleitung zur Einrichtung von C# auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für .NET auf.
PHP Folgen Sie der Anleitung zur Einrichtung von PHP auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für PHP auf.
Ruby: Folgen Sie der Anleitung zur Einrichtung von Ruby auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für Ruby auf.
Entitäten in Cloud Storage analysieren
Um Ihnen die Arbeit zu erleichtern, kann die Natural Language API die Entitätsanalyse direkt für eine Datei in Cloud Storage durchführen, ohne den Inhalt der Datei im Text Ihrer Anfrage zu senden.
Hier ist ein Beispiel für eine Entitätsanalyse einer Datei in Cloud Storage.
Protokoll
Zum Analysieren von Entitäten in einem Dokument, das in Cloud Storage gespeichert ist, senden Sie eine POST
-Anfrage an die REST-Methode documents:analyzeEntities
und geben dabei den entsprechenden Anfragetext mit dem Pfad zum Dokument an. Beispiel:
curl -X POST \ -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \ -H "Content-Type: application/json; charset=utf-8" \ --data "{ 'document':{ 'type':'PLAIN_TEXT', 'gcsContentUri':'gs://<bucket-name>/<object-name>' } }" "https://language.googleapis.com/v2/documents:analyzeEntities"
Wenn Sie document.language_code
nicht angeben, wird die Sprache automatisch erkannt. Informationen dazu, welche Sprachen von der Natural Language API unterstützt werden, finden Sie unter Sprachunterstützung. Weitere Informationen zum Konfigurieren des Anfragetexts erhalten Sie in der Referenzdokumentation zu Document
.
Wenn die Anfrage erfolgreich ist, gibt der Server den HTTP-Statuscode 200 OK
und die Antwort im JSON-Format zurück:
{ "entities": [ { "name": "October 7", "type": "DATE", "metadata": { "month": "10", "day": "7" }, "mentions": [ { "text": { "content": "October 7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "mentions": [ { "text": { "content": "1600", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "mentions": [ { "text": { "content": "7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "locality": "Washington", "narrow_region": "District of Columbia", "street_name": "Pennsylvania Avenue Northwest", "street_number": "1600", "broad_region": "District of Columbia", "country": "US" }, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW", "beginOffset": -1 }, "type": "PROPER", "probability": 0.901 } ] }, { "name": "President", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "President", "beginOffset": -1 }, "type": "COMMON", "probability": 0.941 } ] }, { "name": "Trump", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "Trump", "beginOffset": -1 }, "type": "PROPER", "probability": 0.948 } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": -1 }, "type": "PROPER", "probability": 0.92 } ] }, { "name": "White House", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "White House", "beginOffset": -1 }, "type": "PROPER", "probability": 0.785 } ] } ], "languageCode": "en", "languageSupported": true }
Das Array entities
setzt sich aus Objekten vom Typ Entity
zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.
gcloud
Ausführliche Informationen finden Sie unter dem Befehl analyze-entities
.
Für eine Entitätsanalyse an einer Datei in Cloud Storage verwenden Sie das gcloud
-Befehlszeilentool. Nutzen Sie dabei das Flag --content-file
zur Identifizierung des Dateipfads für den zu analysierenden Inhalt:
gcloud ml language analyze-entities --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME
Wenn die Anfrage erfolgreich ist, gibt der Server eine Antwort im JSON-Format zurück:
{ "entities": [ { "name": "October 7", "type": "DATE", "metadata": { "month": "10", "day": "7" }, "mentions": [ { "text": { "content": "October 7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "mentions": [ { "text": { "content": "1600", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "mentions": [ { "text": { "content": "7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "locality": "Washington", "narrow_region": "District of Columbia", "street_name": "Pennsylvania Avenue Northwest", "street_number": "1600", "broad_region": "District of Columbia", "country": "US" }, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW", "beginOffset": -1 }, "type": "PROPER", "probability": 0.901 } ] }, { "name": "President", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "President", "beginOffset": -1 }, "type": "COMMON", "probability": 0.941 } ] }, { "name": "Trump", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "Trump", "beginOffset": -1 }, "type": "PROPER", "probability": 0.948 } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": -1 }, "type": "PROPER", "probability": 0.92 } ] }, { "name": "White House", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "White House", "beginOffset": -1 }, "type": "PROPER", "probability": 0.785 } ] } ], "languageCode": "en", "languageSupported": true }
Das Array entities
setzt sich aus Objekten vom Typ Entity
zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.
Go
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Go API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Java
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Java API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Node.js API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Python
Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Python API.
Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Weitere Sprachen
C#: Folgen Sie der Anleitung zur Einrichtung von C# auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für .NET auf.
PHP Folgen Sie der Anleitung zur Einrichtung von PHP auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für PHP auf.
Ruby: Folgen Sie der Anleitung zur Einrichtung von Ruby auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für Ruby auf.