Entitäten analysieren

Die Entitätsanalyse untersucht den gegebenen Text auf bekannte Entitäten (Eigennamen, zum Beispiel von Personen des öffentlichen Lebens, Sehenswürdigkeiten usw.) und gibt Informationen über diese Entitäten zurück. Die Entitätsanalyse erfolgt mit der Methode analyzeEntities. Welche Entitätstypen von der Natural Language erkannt werden, finden Sie in der Dokumentation zu Entitäten. Informationen dazu, welche Sprachen von der Natural Language API unterstützt werden, finden Sie unter Sprachunterstützung.

In diesem Abschnitt werden verschiedene Möglichkeiten zum Erkennen von Entitäten in einem Dokument gezeigt. Für jedes Dokument muss eine separate Anfrage gesendet werden.

Entitäten in einem String analysieren

Hier ist ein Beispiel für die Durchführung einer Entitätsanalyse an einem Textstring, der direkt an die Cloud Natural Language API gesendet wird:

Protokoll

Zum Analysieren von Entitäten in einem Dokument senden Sie eine POST-Anfrage an die REST-Methode documents:analyzeEntities und geben den entsprechenden Anfragetext an, wie im folgenden Beispiel gezeigt.

Im Beispiel wird mithilfe des Befehls gcloud auth application-default print-access-token ein Zugriffstoken für ein Dienstkonto abgerufen, das für das Projekt mit dem gcloud CLI der Google Cloud Platform eingerichtet wurde. Eine Anleitung zum Installieren des gcloud-CLI und zum Einrichten eines Projekts mit einem Dienstkonto finden Sie in der Kurzanleitung.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'encodingType': 'UTF8',
  'document': {
    'type': 'PLAIN_TEXT',
    'content': 'President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7.'
  }
}" "https://language.googleapis.com/v2/documents:analyzeEntities"

Wenn Sie document.language_code nicht angeben, wird die Sprache automatisch erkannt. Informationen dazu, welche Sprachen von der Natural Language API unterstützt werden, finden Sie unter Sprachunterstützung. Weitere Informationen zum Konfigurieren des Anfragetexts erhalten Sie in der Referenzdokumentation zu Document.

Wenn die Anfrage erfolgreich ist, gibt der Server den HTTP-Statuscode 200 OK und die Antwort im JSON-Format zurück:

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

Das Array entities setzt sich aus Objekten vom Typ Entity zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.

gcloud

Ausführliche Informationen finden Sie unter dem Befehl analyze-entities.

Für eine Entitätsanalyse verwenden Sie die gcloud CLI. Nutzen Sie dabei das Flag --content zur Identifizierung des zu analysierenden Inhalts:

gcloud ml language analyze-entities --content="President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7."

Wenn die Anfrage erfolgreich ist, gibt der Server eine Antwort im JSON-Format zurück:

{
  "entities": [
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {
        "mid": "/m/0cqt90",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump"
      },
      "salience": 0.7936003,
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": 10
          },
          "type": "PROPER"
        },
        {
          "text": {
            "content": "President",
            "beginOffset": 0
          },
          "type": "COMMON"
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/081sq",
        "wikipedia_url": "https://en.wikipedia.org/wiki/White_House"
      },
      "salience": 0.09172433,
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": 36
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {
        "mid": "/g/1tgb87cq"
      },
      "salience": 0.085507184,
      "mentions": [
        {
          "text": {
            "content": "Pennsylvania Ave NW",
            "beginOffset": 65
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/0rh6k",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C."
      },
      "salience": 0.029168168,
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": 86
          },
          "type": "PROPER"
        }
      ]
    }
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "country": "US",
        "sublocality": "Fort Lesley J. McNair",
        "locality": "Washington",
        "street_name": "Pennsylvania Avenue Northwest",
        "broad_region": "District of Columbia",
        "narrow_region": "District of Columbia",
        "street_number": "1600"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": 60
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
      }
    }
    {
      "name": "1600",
       "type": "NUMBER",
       "metadata": {
           "value": "1600"
       },
       "salience": 0,
       "mentions": [
         {
          "text": {
              "content": "1600",
              "beginOffset": 60
           },
           "type": "TYPE_UNKNOWN"
        }
     ]
     },
     {
       "name": "October 7",
       "type": "DATE",
       "metadata": {
         "day": "7",
         "month": "10"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "October 7",
             "beginOffset": 105
            },
           "type": "TYPE_UNKNOWN"
         }
       ]
     }
     {
       "name": "7",
       "type": "NUMBER",
       "metadata": {
         "value": "7"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "7",
             "beginOffset": 113
           },
         "type": "TYPE_UNKNOWN"
         }
        ]
     }
  ],
  "language": "en"
}

Das Array entities setzt sich aus Objekten vom Typ Entity zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.

Go

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Go API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"fmt"
	"io"

	language "cloud.google.com/go/language/apiv2"
	"cloud.google.com/go/language/apiv2/languagepb"
)

// analyzeEntities sends a string of text to the Cloud Natural Language API to
// detect the entities of the text.
func analyzeEntities(w io.Writer, text string) error {
	ctx := context.Background()

	// Initialize client.
	client, err := language.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	resp, err := client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})

	if err != nil {
		return fmt.Errorf("AnalyzeEntities: %w", err)
	}
	fmt.Fprintf(w, "Response: %q\n", resp)

	return nil
}

Java

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Java API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s", entity.getName());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
      System.out.printf("Probability: %s\n\n", mention.getProbability());
    }
  }
}

Node.js

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Node.js API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});

const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}`);
  if (entity.metadata) {
    console.log(` - Metadata: ${entity.metadata}`);
  }
});

Python

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Python API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.cloud import language_v2


def sample_analyze_entities(text_content: str = "California is a state.") -> None:
    """
    Analyzes Entities in a string.

    Args:
      text_content: The text content to analyze
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "content": text_content,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32.
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_entities(
        request={"document": document, "encoding_type": encoding_type}
    )

    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")

        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al.
        # See https://cloud.google.com/natural-language/docs/reference/rest/v2/Entity#type.
        print(f"Entity type: {language_v2.Entity.Type(entity.type_).name}")

        # Loop over the metadata associated with entity.
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name}: {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")

            # Get the mention type, e.g. PROPER for proper noun
            print(f"Mention type: {language_v2.EntityMention.Type(mention.type_).name}")

            # Get the probability score associated with the first mention of the entity in the (0, 1.0] range.
            print(f"Probability score: {mention.probability}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Weitere Sprachen

C#: Folgen Sie der Anleitung zur Einrichtung von C# auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für .NET auf.

PHP Folgen Sie der Anleitung zur Einrichtung von PHP auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für PHP auf.

Ruby: Folgen Sie der Anleitung zur Einrichtung von Ruby auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für Ruby auf.

Entitäten in Cloud Storage analysieren

Um Ihnen die Arbeit zu erleichtern, kann die Natural Language API die Entitätsanalyse direkt für eine Datei in Cloud Storage durchführen, ohne den Inhalt der Datei im Text Ihrer Anfrage zu senden.

Hier ist ein Beispiel für eine Entitätsanalyse einer Datei in Cloud Storage.

Protokoll

Zum Analysieren von Entitäten in einem Dokument, das in Cloud Storage gespeichert ist, senden Sie eine POST-Anfrage an die REST-Methode documents:analyzeEntities und geben dabei den entsprechenden Anfragetext mit dem Pfad zum Dokument an. Beispiel:

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'document':{
    'type':'PLAIN_TEXT',
    'gcsContentUri':'gs://<bucket-name>/<object-name>'
  }
}" "https://language.googleapis.com/v2/documents:analyzeEntities"

Wenn Sie document.language_code nicht angeben, wird die Sprache automatisch erkannt. Informationen dazu, welche Sprachen von der Natural Language API unterstützt werden, finden Sie unter Sprachunterstützung. Weitere Informationen zum Konfigurieren des Anfragetexts erhalten Sie in der Referenzdokumentation zu Document.

Wenn die Anfrage erfolgreich ist, gibt der Server den HTTP-Statuscode 200 OK und die Antwort im JSON-Format zurück:

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

Das Array entities setzt sich aus Objekten vom Typ Entity zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.

gcloud

Ausführliche Informationen finden Sie unter dem Befehl analyze-entities.

Für eine Entitätsanalyse an einer Datei in Cloud Storage verwenden Sie das gcloud-Befehlszeilentool. Nutzen Sie dabei das Flag --content-file zur Identifizierung des Dateipfads für den zu analysierenden Inhalt:

gcloud ml language analyze-entities --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME

Wenn die Anfrage erfolgreich ist, gibt der Server eine Antwort im JSON-Format zurück:

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

Das Array entities setzt sich aus Objekten vom Typ Entity zusammen. Diese stellen die erkannten Entitäten dar und enthalten Informationen wie den Entitätsnamen und -typ.

Go

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Go API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


func analyzeEntitiesFromGCS(ctx context.Context, gcsURI string) (*languagepb.AnalyzeEntitiesResponse, error) {
	return client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
}

Java

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Java API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  // Set the GCS Content URI path to the file to be analyzed
  Document doc =
      Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s\n", entity.getName());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
      System.out.printf("Probability: %s\n\n", mention.getProbability());
    }
  }
}

Node.js

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Node.js API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});
const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}`);
  if (entity.metadata) {
    console.log(` - Metadata: ${entity.metadata}`);
  }
});

Python

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Python API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.cloud import language_v2


def sample_analyze_entities(
    gcs_content_uri: str = "gs://cloud-samples-data/language/entity.txt",
) -> None:
    """
    Analyzes Entities in text file stored in Cloud Storage.

    Args:
      gcs_content_uri: Google Cloud Storage URI where the file content is located.
        e.g. gs://[Your Bucket]/[Path to File]
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32.
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_entities(
        request={"document": document, "encoding_type": encoding_type}
    )

    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")

        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al.
        # See https://cloud.google.com/natural-language/docs/reference/rest/v2/Entity#type.
        print(f"Entity type: {language_v2.Entity.Type(entity.type_).name}")

        # Loop over the metadata associated with entity.
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name}: {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")

            # Get the mention type, e.g. PROPER for proper noun
            print(
                "Mention type:" f" {language_v2.EntityMention.Type(mention.type_).name}"
            )

            # Get the probability score associated with the first mention of the entity in the (0, 1.0] range.
            print(f"Probability score: {mention.probability}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Weitere Sprachen

C#: Folgen Sie der Anleitung zur Einrichtung von C# auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für .NET auf.

PHP Folgen Sie der Anleitung zur Einrichtung von PHP auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für PHP auf.

Ruby: Folgen Sie der Anleitung zur Einrichtung von Ruby auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für Ruby auf.