Analisis Entity memeriksa teks yang diberikan untuk menemukan entity umum (nama sebutan
seperti tokoh publik, landmark, dll.), dan menampilkan informasi tentang entity
tersebut. Analisis entity dilakukan dengan metode analyzeEntities
. Untuk
mengetahui informasi tentang jenis entity yang diidentifikasi Natural Language, lihat
dokumentasi Entity. Untuk
mengetahui informasi tentang bahasa yang didukung oleh Natural Language API,
lihat Dukungan Bahasa.
Bagian ini menunjukkan beberapa cara untuk mendeteksi entitas dalam dokumen. Untuk setiap dokumen, Anda harus mengirimkan permintaan terpisah.
Menganalisis Entity dalam String
Berikut adalah contoh melakukan analisis entity pada string teks yang dikirim langsung ke Natural Language API:
Protokol
Untuk menganalisis entitas dalam dokumen, buat permintaan POST
ke metode REST documents:analyzeEntities
dan berikan isi permintaan yang sesuai seperti yang ditunjukkan dalam contoh berikut.
Contoh ini menggunakan perintah gcloud auth application-default print-access-token
untuk mendapatkan token akses untuk akun layanan yang disiapkan untuk project menggunakan gcloud CLI Google Cloud Platform.
Untuk petunjuk tentang cara menginstal gcloud CLI, menyiapkan project dengan akun layanan, lihat Panduan Memulai.
curl -X POST \ -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \ -H "Content-Type: application/json; charset=utf-8" \ --data "{ 'encodingType': 'UTF8', 'document': { 'type': 'PLAIN_TEXT', 'content': 'President Trump will speak from the White House, located at 1600 Pennsylvania Ave NW, Washington, DC, on October 7.' } }" "https://language.googleapis.com/v2/documents:analyzeEntities"
Jika Anda tidak menentukan document.language_code
, bahasa akan otomatis
dideteksi. Untuk mengetahui informasi tentang bahasa yang didukung oleh Natural Language API,
lihat Dukungan Bahasa. Lihat dokumentasi referensi Document
untuk mengetahui informasi selengkapnya tentang cara mengonfigurasi isi
permintaan.
Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK
dan respons dalam format JSON:
{ "entities": [ { "name": "October 7", "type": "DATE", "metadata": { "month": "10", "day": "7" }, "mentions": [ { "text": { "content": "October 7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "mentions": [ { "text": { "content": "1600", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "mentions": [ { "text": { "content": "7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "locality": "Washington", "narrow_region": "District of Columbia", "street_name": "Pennsylvania Avenue Northwest", "street_number": "1600", "broad_region": "District of Columbia", "country": "US" }, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW", "beginOffset": -1 }, "type": "PROPER", "probability": 0.901 } ] }, { "name": "President", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "President", "beginOffset": -1 }, "type": "COMMON", "probability": 0.941 } ] }, { "name": "Trump", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "Trump", "beginOffset": -1 }, "type": "PROPER", "probability": 0.948 } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": -1 }, "type": "PROPER", "probability": 0.92 } ] }, { "name": "White House", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "White House", "beginOffset": -1 }, "type": "PROPER", "probability": 0.785 } ] } ], "languageCode": "en", "languageSupported": true }
Array entities
berisi objek Entity
yang mewakili entity yang terdeteksi, yang mencakup informasi seperti
nama dan jenis entity.
gcloud
Lihat perintah analyze-entities
untuk mengetahui detail selengkapnya.
Untuk melakukan analisis entitas, gunakan gcloud CLI dan
gunakan flag --content
untuk mengidentifikasi konten yang akan dianalisis:
gcloud ml language analyze-entities --content="President Trump will speak from the White House, located at 1600 Pennsylvania Ave NW, Washington, DC, on October 7."
Jika permintaan berhasil, server akan menampilkan respons dalam format JSON:
{ "entities": [ { "name": "Trump", "type": "PERSON", "metadata": { "mid": "/m/0cqt90", "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump" }, "salience": 0.7936003, "mentions": [ { "text": { "content": "Trump", "beginOffset": 10 }, "type": "PROPER" }, { "text": { "content": "President", "beginOffset": 0 }, "type": "COMMON" } ] }, { "name": "White House", "type": "LOCATION", "metadata": { "mid": "/m/081sq", "wikipedia_url": "https://en.wikipedia.org/wiki/White_House" }, "salience": 0.09172433, "mentions": [ { "text": { "content": "White House", "beginOffset": 36 }, "type": "PROPER" } ] }, { "name": "Pennsylvania Ave NW", "type": "LOCATION", "metadata": { "mid": "/g/1tgb87cq" }, "salience": 0.085507184, "mentions": [ { "text": { "content": "Pennsylvania Ave NW", "beginOffset": 65 }, "type": "PROPER" } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": { "mid": "/m/0rh6k", "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C." }, "salience": 0.029168168, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": 86 }, "type": "PROPER" } ] } { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "country": "US", "sublocality": "Fort Lesley J. McNair", "locality": "Washington", "street_name": "Pennsylvania Avenue Northwest", "broad_region": "District of Columbia", "narrow_region": "District of Columbia", "street_number": "1600" }, "salience": 0, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": 60 }, "type": "TYPE_UNKNOWN" } ] } } { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "salience": 0, "mentions": [ { "text": { "content": "1600", "beginOffset": 60 }, "type": "TYPE_UNKNOWN" } ] }, { "name": "October 7", "type": "DATE", "metadata": { "day": "7", "month": "10" }, "salience": 0, "mentions": [ { "text": { "content": "October 7", "beginOffset": 105 }, "type": "TYPE_UNKNOWN" } ] } { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "salience": 0, "mentions": [ { "text": { "content": "7", "beginOffset": 113 }, "type": "TYPE_UNKNOWN" } ] } ], "language": "en" }
Array entities
berisi objek Entity
yang mewakili entity yang terdeteksi, yang mencakup informasi seperti
nama dan jenis entity.
Go
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Go API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Java
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Node.js
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Node.js API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Python
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Python API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Bahasa tambahan
C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Natural Language untuk .NET.
PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu kunjungi Dokumentasi referensi Natural Language untuk PHP.
Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Natural Language untuk Ruby.
Menganalisis Entity dari Cloud Storage
Untuk memudahkan Anda, Natural Language API dapat melakukan analisis entity langsung pada file yang terletak di Cloud Storage, tanpa perlu mengirimkan konten file dalam isi permintaan Anda.
Berikut adalah contoh cara melakukan analisis entity pada file yang terletak di Cloud Storage.
Protokol
Untuk menganalisis entity dari dokumen yang disimpan di Cloud Storage,
buat permintaan POST
ke metode REST
documents:analyzeEntities
dan berikan
isi permintaan yang sesuai dengan jalur ke dokumen
seperti yang ditunjukkan dalam contoh berikut.
curl -X POST \ -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \ -H "Content-Type: application/json; charset=utf-8" \ --data "{ 'document':{ 'type':'PLAIN_TEXT', 'gcsContentUri':'gs://<bucket-name>/<object-name>' } }" "https://language.googleapis.com/v2/documents:analyzeEntities"
Jika Anda tidak menentukan document.language_code
, bahasa akan otomatis
dideteksi. Untuk mengetahui informasi tentang bahasa yang didukung oleh Natural Language API,
lihat Dukungan Bahasa. Lihat dokumentasi referensi Document
untuk mengetahui informasi selengkapnya tentang cara mengonfigurasi isi permintaan.
Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK
dan respons dalam format JSON:
{ "entities": [ { "name": "October 7", "type": "DATE", "metadata": { "month": "10", "day": "7" }, "mentions": [ { "text": { "content": "October 7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "mentions": [ { "text": { "content": "1600", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "mentions": [ { "text": { "content": "7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "locality": "Washington", "narrow_region": "District of Columbia", "street_name": "Pennsylvania Avenue Northwest", "street_number": "1600", "broad_region": "District of Columbia", "country": "US" }, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW", "beginOffset": -1 }, "type": "PROPER", "probability": 0.901 } ] }, { "name": "President", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "President", "beginOffset": -1 }, "type": "COMMON", "probability": 0.941 } ] }, { "name": "Trump", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "Trump", "beginOffset": -1 }, "type": "PROPER", "probability": 0.948 } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": -1 }, "type": "PROPER", "probability": 0.92 } ] }, { "name": "White House", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "White House", "beginOffset": -1 }, "type": "PROPER", "probability": 0.785 } ] } ], "languageCode": "en", "languageSupported": true }
Array entities
berisi objek Entity
yang mewakili entity yang terdeteksi, yang mencakup informasi seperti
nama dan jenis entity.
gcloud
Lihat perintah analyze-entities
untuk mengetahui detail selengkapnya.
Untuk melakukan analisis entity pada file di Cloud Storage, gunakan alat command line gcloud
dan gunakan flag --content-file
untuk mengidentifikasi jalur file yang berisi konten yang akan dianalisis:
gcloud ml language analyze-entities --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME
Jika permintaan berhasil, server akan menampilkan respons dalam format JSON:
{ "entities": [ { "name": "October 7", "type": "DATE", "metadata": { "month": "10", "day": "7" }, "mentions": [ { "text": { "content": "October 7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600", "type": "NUMBER", "metadata": { "value": "1600" }, "mentions": [ { "text": { "content": "1600", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "7", "type": "NUMBER", "metadata": { "value": "7" }, "mentions": [ { "text": { "content": "7", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW, Washington, DC", "type": "ADDRESS", "metadata": { "locality": "Washington", "narrow_region": "District of Columbia", "street_name": "Pennsylvania Avenue Northwest", "street_number": "1600", "broad_region": "District of Columbia", "country": "US" }, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW, Washington, DC", "beginOffset": -1 }, "type": "TYPE_UNKNOWN", "probability": 1 } ] }, { "name": "1600 Pennsylvania Ave NW", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "1600 Pennsylvania Ave NW", "beginOffset": -1 }, "type": "PROPER", "probability": 0.901 } ] }, { "name": "President", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "President", "beginOffset": -1 }, "type": "COMMON", "probability": 0.941 } ] }, { "name": "Trump", "type": "PERSON", "metadata": {}, "mentions": [ { "text": { "content": "Trump", "beginOffset": -1 }, "type": "PROPER", "probability": 0.948 } ] }, { "name": "Washington, DC", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "Washington, DC", "beginOffset": -1 }, "type": "PROPER", "probability": 0.92 } ] }, { "name": "White House", "type": "LOCATION", "metadata": {}, "mentions": [ { "text": { "content": "White House", "beginOffset": -1 }, "type": "PROPER", "probability": 0.785 } ] } ], "languageCode": "en", "languageSupported": true }
Array entities
berisi objek Entity
yang mewakili entity yang terdeteksi, yang mencakup informasi seperti
nama dan jenis entity.
Go
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Go API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Java
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Node.js
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Node.js API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Python
Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat Library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Python API Natural Language.
Untuk melakukan autentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Bahasa tambahan
C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Natural Language untuk .NET.
PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu kunjungi Dokumentasi referensi Natural Language untuk PHP.
Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Natural Language untuk Ruby.