Criar e gerenciar conjuntos de dados

Esta página descreve como criar, editar, visualizar, listar e excluir conjuntos de dados. Depois disso, crie armazenamentos de dados com registros eletrônicos de saúde e dados de imagens médicas, remova a identificação do conjunto de dados e muito mais.

Antes de começar

Consulte o modelo de dados da API Cloud Healthcare.

Criar um conjunto de dados

Os exemplos a seguir mostram como criar um conjunto de dados.

Console

  1. No console do Google Cloud, acesse a página Navegador.

    Acessar o navegador

  2. Clique em Criar conjunto de dados. A página Propriedades do conjunto de dados é exibida.

  3. No campo Nome, insira um identificador para o conjunto de dados sujeito aos requisitos de tamanho e caracteres permitidos.

  4. Selecione um dos seguintes tipos de local:

    • Region. O conjunto de dados fica permanentemente em uma região do Google Cloud. Depois de selecionar essa opção, digite ou selecione um local no campo Região.

    • Multirregional. O conjunto de dados fica permanentemente em um local que abrange várias regiões do Google Cloud. Depois de selecionar essa opção, digite ou selecione um local multirregional no campo Multirregião.

  5. Clique em Criar. A página Navegador é exibida. O novo conjunto de dados será exibido na lista.

gcloud

Execute o comando gcloud healthcare datasets create.

Antes de usar os dados do comando abaixo, faça estas substituições:

Execute o seguinte comando:

Linux, macOS ou Cloud Shell

gcloud healthcare datasets create DATASET_ID \
  --location=LOCATION

Windows (PowerShell)

gcloud healthcare datasets create DATASET_ID `
  --location=LOCATION

Windows (cmd.exe)

gcloud healthcare datasets create DATASET_ID ^
  --location=LOCATION

Você receberá uma resposta semelhante a esta

Create request issued for: [DATASET_ID]
Created dataset [DATASET_ID].

REST

  1. Crie o conjunto de dados usando o método projects.locations.datasets.create.

    Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

    Para enviar a solicitação, escolha uma destas opções:

    curl

    execute o seguinte comando:

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json; charset=utf-8" \
    -d "" \
    "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets?datasetId=DATASET_ID"

    PowerShell

    Execute o seguinte comando:

    $cred = gcloud auth print-access-token
    $headers = @{ "Authorization" = "Bearer $cred" }

    Invoke-WebRequest `
    -Method POST `
    -Headers $headers `
    -Uri "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets?datasetId=DATASET_ID" | Select-Object -Expand Content

    APIs Explorer

    Abra a página de referência do método. O painel "APIs Explorer" é aberto no lado direito da página. Interaja com essa ferramenta para enviar solicitações. Preencha todos os campos obrigatórios e clique em Executar.

    A saída é esta: A resposta contém um identificador para uma operação de longa duração (LRO). Operações de longa duração são retornadas quando as chamadas de método podem demorar mais para serem concluídas. Observe o valor de OPERATION_ID. Você vai precisar desse valor na próxima etapa.

  2. Confira o status da operação de longa duração usando o método projects.locations.datasets.operations.get.

    Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

    • PROJECT_ID: o ID do seu projeto do Google Cloud;
    • LOCATION: o local do conjunto de dados;
    • DATASET_ID: o ID do conjunto de dados;
    • OPERATION_ID: o ID retornado da operação de longa duração.

    Para enviar a solicitação, escolha uma destas opções:

    curl

    execute o seguinte comando:

    curl -X GET \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID"

    PowerShell

    Execute o seguinte comando:

    $cred = gcloud auth print-access-token
    $headers = @{ "Authorization" = "Bearer $cred" }

    Invoke-WebRequest `
    -Method GET `
    -Headers $headers `
    -Uri "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID" | Select-Object -Expand Content

    APIs Explorer

    Abra a página de referência do método. O painel "APIs Explorer" é aberto no lado direito da página. Interaja com essa ferramenta para enviar solicitações. Preencha todos os campos obrigatórios e clique em Executar.

    A saída é esta: Quando a resposta contém "done": true, a operação de longa duração foi concluída.

Go

import (
	"context"
	"fmt"
	"io"
	"time"

	healthcare "google.golang.org/api/healthcare/v1"
)

// createDataset creates a dataset.
func createDataset(w io.Writer, projectID, location, datasetID string) error {
	// Set a deadline for the dataset to become initialized.
	ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
	defer cancel()

	healthcareService, err := healthcare.NewService(ctx)
	if err != nil {
		return fmt.Errorf("healthcare.NewService: %w", err)
	}

	datasetsService := healthcareService.Projects.Locations.Datasets

	parent := fmt.Sprintf("projects/%s/locations/%s", projectID, location)

	resp, err := datasetsService.Create(parent, &healthcare.Dataset{}).DatasetId(datasetID).Context(ctx).Do()
	if err != nil {
		return fmt.Errorf("Create: %w", err)
	}

	// The dataset is not always ready to use immediately, instead a long-running operation is returned.
	// This is how you might poll the operation to ensure the dataset is fully initialized before proceeding.
	// Initialization usually takes less than a minute.
	for !resp.Done {
		time.Sleep(15 * time.Second)
		resp, err = datasetsService.Operations.Get(resp.Name).Context(ctx).Do()
		if err != nil {
			return fmt.Errorf("Operations.Get(%s): %w", resp.Name, err)
		}
	}

	fmt.Fprintf(w, "Created dataset: %q\n", resp.Name)
	return nil
}

Java

import com.google.api.client.http.HttpRequestInitializer;
import com.google.api.client.http.javanet.NetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.gson.GsonFactory;
import com.google.api.services.healthcare.v1.CloudHealthcare;
import com.google.api.services.healthcare.v1.CloudHealthcare.Projects.Locations.Datasets;
import com.google.api.services.healthcare.v1.CloudHealthcareScopes;
import com.google.api.services.healthcare.v1.model.Dataset;
import com.google.api.services.healthcare.v1.model.Operation;
import com.google.auth.http.HttpCredentialsAdapter;
import com.google.auth.oauth2.GoogleCredentials;
import java.io.IOException;
import java.util.Collections;

public class DatasetCreate {
  private static final String DATASET_NAME = "projects/%s/locations/%s/datasets/%s";
  private static final JsonFactory JSON_FACTORY = new GsonFactory();
  private static final NetHttpTransport HTTP_TRANSPORT = new NetHttpTransport();

  public static void datasetCreate(String projectId, String regionId, String datasetId)
      throws IOException {
    // String projectId = "your-project-id";
    // String regionId = "us-central1";
    // String datasetId = "your-dataset-id";

    // Initialize the client, which will be used to interact with the service.
    CloudHealthcare client = createClient();

    // Configure the dataset to be created.
    Dataset dataset = new Dataset();
    dataset.setTimeZone("America/Chicago");

    // Create request and configure any parameters.
    String parentName = String.format("projects/%s/locations/%s", projectId, regionId);
    Datasets.Create request = client.projects().locations().datasets().create(parentName, dataset);
    request.setDatasetId(datasetId);

    // Execute the request, wait for the operation to complete, and process the results.
    try {
      Operation operation = request.execute();
      System.out.println(operation.toPrettyString());
      while (operation.getDone() == null || !operation.getDone()) {
        // Update the status of the operation with another request.
        Thread.sleep(500); // Pause for 500ms between requests.
        operation =
            client
                .projects()
                .locations()
                .datasets()
                .operations()
                .get(operation.getName())
                .execute();
      }
      System.out.println("Dataset created. Response content: " + operation.getResponse());
    } catch (Exception ex) {
      System.out.printf("Error during request execution: %s\n", ex.toString());
      ex.printStackTrace(System.out);
    }
  }

  private static CloudHealthcare createClient() throws IOException {
    // Use Application Default Credentials (ADC) to authenticate the requests
    // For more information see https://cloud.google.com/docs/authentication/production
    GoogleCredentials credential =
        GoogleCredentials.getApplicationDefault()
            .createScoped(Collections.singleton(CloudHealthcareScopes.CLOUD_PLATFORM));

    // Create a HttpRequestInitializer, which will provide a baseline configuration to all requests.
    HttpRequestInitializer requestInitializer =
        request -> {
          new HttpCredentialsAdapter(credential).initialize(request);
          request.setConnectTimeout(60000); // 1 minute connect timeout
          request.setReadTimeout(60000); // 1 minute read timeout
        };

    // Build the client for interacting with the service.
    return new CloudHealthcare.Builder(HTTP_TRANSPORT, JSON_FACTORY, requestInitializer)
        .setApplicationName("your-application-name")
        .build();
  }
}

Node.js

const google = require('@googleapis/healthcare');
const healthcare = google.healthcare({
  version: 'v1',
  auth: new google.auth.GoogleAuth({
    scopes: ['https://www.googleapis.com/auth/cloud-platform'],
  }),
});

const createDataset = async () => {
  // TODO(developer): uncomment these lines before running the sample
  // const cloudRegion = 'us-central1';
  // const projectId = 'adjective-noun-123';
  // const datasetId = 'my-dataset';
  const parent = `projects/${projectId}/locations/${cloudRegion}`;
  const request = {parent, datasetId};

  await healthcare.projects.locations.datasets.create(request);
  console.log(`Created dataset: ${datasetId}`);
};

createDataset();

Python

# Imports the Dict type for runtime type hints.
from typing import Dict


def create_dataset(project_id: str, location: str, dataset_id: str) -> Dict[str, str]:
    """Creates a Cloud Healthcare API dataset.

    See
    https://github.com/GoogleCloudPlatform/python-docs-samples/tree/main/healthcare/api-client/v1/datasets
    before running the sample.
    See
    https://googleapis.github.io/google-api-python-client/docs/dyn/healthcare_v1.projects.locations.datasets.html#create
    for the Python API reference.

    Args:
      project_id: The project ID or project number of the Google Cloud project you want
          to use.
      location: The name of the dataset's location.
      dataset_id: The ID of the dataset to create.

    Returns:
      A dictionary representing a long-running operation that results from
      calling the 'CreateDataset' method. Dataset creation is typically fast.
    """
    # Imports the Python built-in time module.
    import time

    # Imports the Google API Discovery Service.
    from googleapiclient import discovery

    # Imports HttpError from the Google Python API client errors module.
    from googleapiclient.errors import HttpError

    api_version = "v1"
    service_name = "healthcare"
    # Returns an authorized API client by discovering the Healthcare API
    # and using GOOGLE_APPLICATION_CREDENTIALS environment variable.
    client = discovery.build(service_name, api_version)

    # TODO(developer): Uncomment these lines and replace with your values.
    # project_id = 'my-project'
    # location = 'us-central1'
    # dataset_id = 'my-dataset'
    dataset_parent = f"projects/{project_id}/locations/{location}"

    request = (
        client.projects()
        .locations()
        .datasets()
        .create(parent=dataset_parent, body={}, datasetId=dataset_id)
    )

    # Wait for operation to complete.
    start_time = time.time()
    max_time = 600  # 10 minutes, but dataset creation is typically only a few seconds.

    try:
        operation = request.execute()
        while not operation.get("done", False):
            # Poll until the operation finishes.
            print("Waiting for operation to finish...")
            if time.time() - start_time > max_time:
                raise TimeoutError("Timed out waiting for operation to finish.")
            operation = (
                client.projects()
                .locations()
                .datasets()
                .operations()
                .get(name=operation["name"])
                .execute()
            )
            # Wait 5 seconds between each poll to the operation.
            time.sleep(5)

        if "error" in operation:
            raise RuntimeError(f"Create dataset operation failed: {operation['error']}")
        else:
            dataset_name = operation["response"]["name"]
            print(f"Created dataset: {dataset_name}")
            return operation

    except HttpError as err:
        # A common error is when the dataset already exists.
        if err.resp.status == 409:
            print(f"Dataset with ID {dataset_id} already exists.")
            return
        else:
            raise err

Editar um conjunto de dados

Os exemplos a seguir mostram como editar um conjunto de dados.

Console

O console do Google Cloud não é compatível com a edição de um conjunto de dados. Em vez disso, use a Google Cloud CLI ou a API REST.

gcloud

Execute o comando gcloud healthcare datasets update.

Antes de usar os dados do comando abaixo, faça estas substituições:

  • LOCATION: o local do conjunto de dados;
  • DATASET_ID: o ID do conjunto de dados;
  • TIME_ZONE: um fuso horário com suporte, como UTC

Execute o seguinte comando:

Linux, macOS ou Cloud Shell

gcloud healthcare datasets update DATASET_ID \
  --location=LOCATION \
  --time-zone=TIME_ZONE

Windows (PowerShell)

gcloud healthcare datasets update DATASET_ID `
  --location=LOCATION `
  --time-zone=TIME_ZONE

Windows (cmd.exe)

gcloud healthcare datasets update DATASET_ID ^
  --location=LOCATION ^
  --time-zone=TIME_ZONE

Você receberá uma resposta semelhante a esta

Updated dataset [DATASET_ID].
name: projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID
timeZone: TIME_ZONE

REST

Use o método projects.locations.datasets.patch.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • PROJECT_ID: o ID do seu projeto do Google Cloud;
  • LOCATION: o local do conjunto de dados;
  • DATASET_ID: o ID do conjunto de dados;
  • TIME_ZONE: um fuso horário com suporte, como UTC

Corpo JSON da solicitação:

{
  "timeZone": "TIME_ZONE"
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X PATCH \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID?updateMask=timeZone"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method PATCH `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID?updateMask=timeZone" | Select-Object -Expand Content

APIs Explorer

Copie o corpo da solicitação e abra a página de referência do método. O painel "APIs Explorer" é aberto no lado direito da página. Interaja com essa ferramenta para enviar solicitações. Cole o corpo da solicitação nessa ferramenta, preencha todos os outros campos obrigatórios e clique em Executar.

Você receberá uma resposta JSON semelhante a esta:

Go

import (
	"context"
	"fmt"
	"io"

	healthcare "google.golang.org/api/healthcare/v1"
)

// patchDataset updates (patches) a dataset by updating its timezone..
func patchDataset(w io.Writer, projectID, location, datasetID, newTimeZone string) error {
	ctx := context.Background()

	healthcareService, err := healthcare.NewService(ctx)
	if err != nil {
		return fmt.Errorf("healthcare.NewService: %w", err)
	}

	datasetsService := healthcareService.Projects.Locations.Datasets

	name := fmt.Sprintf("projects/%s/locations/%s/datasets/%s", projectID, location, datasetID)

	if _, err := datasetsService.Patch(name, &healthcare.Dataset{
		TimeZone: newTimeZone,
	}).UpdateMask("timeZone").Do(); err != nil {
		return fmt.Errorf("Patch: %w", err)
	}

	fmt.Fprintf(w, "Patched dataset %s with timeZone %s\n", datasetID, newTimeZone)

	return nil
}

Java

import com.google.api.client.http.HttpRequestInitializer;
import com.google.api.client.http.javanet.NetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.gson.GsonFactory;
import com.google.api.services.healthcare.v1.CloudHealthcare;
import com.google.api.services.healthcare.v1.CloudHealthcare.Projects.Locations.Datasets;
import com.google.api.services.healthcare.v1.CloudHealthcareScopes;
import com.google.api.services.healthcare.v1.model.Dataset;
import com.google.auth.http.HttpCredentialsAdapter;
import com.google.auth.oauth2.GoogleCredentials;
import java.io.IOException;
import java.util.Collections;

public class DatasetPatch {
  private static final String DATASET_NAME = "projects/%s/locations/%s/datasets/%s";
  private static final JsonFactory JSON_FACTORY = new GsonFactory();
  private static final NetHttpTransport HTTP_TRANSPORT = new NetHttpTransport();

  public static void datasetPatch(String datasetName) throws IOException {
    // String datasetName =
    //     String.format(DATASET_NAME, "your-project-id", "your-region-id", "your-dataset-id");

    // Initialize the client, which will be used to interact with the service.
    CloudHealthcare client = createClient();

    // Fetch the initial state of the dataset.
    Datasets.Get getRequest = client.projects().locations().datasets().get(datasetName);
    Dataset dataset = getRequest.execute();

    // Update the Dataset fields as needed as needed. For a full list of dataset fields, see:
    // https://cloud.google.com/healthcare/docs/reference/rest/v1beta1/projects.locations.datasets#Dataset
    dataset.setTimeZone("America/New_York");

    // Create request and configure any parameters.
    Datasets.Patch request =
        client
            .projects()
            .locations()
            .datasets()
            .patch(datasetName, dataset)
            .setUpdateMask("timeZone");

    // Execute the request and process the results.
    dataset = request.execute();
    System.out.println("Dataset patched: \n" + dataset.toPrettyString());
  }

  private static CloudHealthcare createClient() throws IOException {
    // Use Application Default Credentials (ADC) to authenticate the requests
    // For more information see https://cloud.google.com/docs/authentication/production
    GoogleCredentials credential =
        GoogleCredentials.getApplicationDefault()
            .createScoped(Collections.singleton(CloudHealthcareScopes.CLOUD_PLATFORM));

    // Create a HttpRequestInitializer, which will provide a baseline configuration to all requests.
    HttpRequestInitializer requestInitializer =
        request -> {
          new HttpCredentialsAdapter(credential).initialize(request);
          request.setConnectTimeout(60000); // 1 minute connect timeout
          request.setReadTimeout(60000); // 1 minute read timeout
        };

    // Build the client for interacting with the service.
    return new CloudHealthcare.Builder(HTTP_TRANSPORT, JSON_FACTORY, requestInitializer)
        .setApplicationName("your-application-name")
        .build();
  }
}

Node.js

const google = require('@googleapis/healthcare');
const healthcare = google.healthcare({
  version: 'v1',
  auth: new google.auth.GoogleAuth({
    scopes: ['https://www.googleapis.com/auth/cloud-platform'],
  }),
});

const patchDataset = async () => {
  // TODO(developer): uncomment these lines before running the sample
  // const cloudRegion = 'us-central1';
  // const projectId = 'adjective-noun-123';
  // const datasetId = 'my-dataset';
  // const timeZone = 'UTC';
  const name = `projects/${projectId}/locations/${cloudRegion}/datasets/${datasetId}`;
  const request = {
    name,
    updateMask: 'timeZone',
    resource: {timeZone: timeZone},
  };

  await healthcare.projects.locations.datasets.patch(request);
  console.log(`Dataset ${datasetId} patched with time zone ${timeZone}`);
};

patchDataset();

Python

# Imports the Dict type for runtime type hints.
from typing import Dict

def patch_dataset(
    project_id: str, location: str, dataset_id: str, time_zone: str
) -> Dict[str, str]:
    """Updates dataset metadata.

    See
    https://github.com/GoogleCloudPlatform/python-docs-samples/tree/main/healthcare/api-client/v1/datasets
    before running the sample.
    See https://googleapis.github.io/google-api-python-client/docs/dyn/healthcare_v1.projects.locations.datasets.html#patch
    for the Python API reference.

    Args:
      project_id: The project ID or project number of the Google Cloud project you want
          to use.
      location: The name of the dataset's location.
      dataset_id: The ID of the dataset to patch.
      time_zone: The default timezone used by the dataset.

    Returns:
      A dictionary representing the patched Dataset resource.
    """
    # Imports the Google API Discovery Service.
    from googleapiclient import discovery

    # Imports HttpError from the Google Python API client errors module.
    from googleapiclient.errors import HttpError

    api_version = "v1"
    service_name = "healthcare"
    # Returns an authorized API client by discovering the Healthcare API
    # and using GOOGLE_APPLICATION_CREDENTIALS environment variable.
    client = discovery.build(service_name, api_version)

    # TODO(developer): Uncomment these lines and replace with your values.
    # project_id = 'my-project'
    # location = 'us-central1'
    # dataset_id = 'my-dataset'
    # time_zone = 'GMT'
    dataset_parent = f"projects/{project_id}/locations/{location}"
    dataset_name = f"{dataset_parent}/datasets/{dataset_id}"

    # Sets the time zone
    patch = {"timeZone": time_zone}

    request = (
        client.projects()
        .locations()
        .datasets()
        .patch(name=dataset_name, updateMask="timeZone", body=patch)
    )

    try:
        response = request.execute()
        print(f"Patched dataset {dataset_id} with time zone: {time_zone}")
        return response
    except HttpError as err:
        raise err

Receber detalhes do conjunto de dados

Os exemplos a seguir mostram como receber detalhes sobre um conjunto de dados.

Console

  1. No console do Google Cloud, acesse a página Navegador.

    Acessar o navegador

  2. Selecione o conjunto de dados. A página Conjunto de dados e os armazenamentos de dados no conjunto de dados são exibidos.

gcloud

Execute o comando gcloud healthcare datasets describe.

Antes de usar os dados do comando abaixo, faça estas substituições:

  • LOCATION: o local do conjunto de dados;
  • DATASET_ID: o ID do conjunto de dados;

Execute o seguinte comando:

Linux, macOS ou Cloud Shell

gcloud healthcare datasets describe DATASET_ID \
  --location=LOCATION

Windows (PowerShell)

gcloud healthcare datasets describe DATASET_ID `
  --location=LOCATION

Windows (cmd.exe)

gcloud healthcare datasets describe DATASET_ID ^
  --location=LOCATION

Você receberá uma resposta semelhante a esta

name: projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID
timeZone: TIME_ZONE

REST

Use o método projects.locations.datasets.get.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • PROJECT_ID: o ID do seu projeto do Google Cloud;
  • LOCATION: o local do conjunto de dados;
  • DATASET_ID: o ID do conjunto de dados;

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID"

PowerShell

Execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID" | Select-Object -Expand Content

APIs Explorer

Abra a página de referência do método. O painel "APIs Explorer" é aberto no lado direito da página. Interaja com essa ferramenta para enviar solicitações. Preencha todos os campos obrigatórios e clique em Executar.

Você receberá uma resposta JSON semelhante a esta:

Go

import (
	"context"
	"fmt"
	"io"

	healthcare "google.golang.org/api/healthcare/v1"
)

// getDataset gets a dataset.
func getDataset(w io.Writer, projectID, location, datasetID string) error {
	ctx := context.Background()

	healthcareService, err := healthcare.NewService(ctx)
	if err != nil {
		return fmt.Errorf("healthcare.NewService: %w", err)
	}

	datasetsService := healthcareService.Projects.Locations.Datasets

	name := fmt.Sprintf("projects/%s/locations/%s/datasets/%s", projectID, location, datasetID)

	resp, err := datasetsService.Get(name).Do()
	if err != nil {
		return fmt.Errorf("Get: %w", err)
	}

	fmt.Fprintf(w, "Name: %s\n", resp.Name)
	fmt.Fprintf(w, "Time zone: %s\n", resp.TimeZone)

	return nil
}

Java

import com.google.api.client.http.HttpRequestInitializer;
import com.google.api.client.http.javanet.NetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.gson.GsonFactory;
import com.google.api.services.healthcare.v1.CloudHealthcare;
import com.google.api.services.healthcare.v1.CloudHealthcare.Projects.Locations.Datasets;
import com.google.api.services.healthcare.v1.CloudHealthcareScopes;
import com.google.api.services.healthcare.v1.model.Dataset;
import com.google.auth.http.HttpCredentialsAdapter;
import com.google.auth.oauth2.GoogleCredentials;
import java.io.IOException;
import java.util.Collections;

public class DatasetGet {
  private static final String DATASET_NAME = "projects/%s/locations/%s/datasets/%s";
  private static final JsonFactory JSON_FACTORY = new GsonFactory();
  private static final NetHttpTransport HTTP_TRANSPORT = new NetHttpTransport();

  public static void datasetGet(String datasetName) throws IOException {
    // String datasetName =
    //     String.format(DATASET_NAME, "your-project-id", "your-region-id", "your-dataset-id");

    // Initialize the client, which will be used to interact with the service.
    CloudHealthcare client = createClient();

    // Create request and configure any parameters.
    Datasets.Get request = client.projects().locations().datasets().get(datasetName);

    // Execute the request and process the results.
    Dataset dataset = request.execute();
    System.out.println("Dataset retrieved: \n" + dataset.toPrettyString());
  }

  private static CloudHealthcare createClient() throws IOException {
    // Use Application Default Credentials (ADC) to authenticate the requests
    // For more information see https://cloud.google.com/docs/authentication/production
    GoogleCredentials credential =
        GoogleCredentials.getApplicationDefault()
            .createScoped(Collections.singleton(CloudHealthcareScopes.CLOUD_PLATFORM));

    // Create a HttpRequestInitializer, which will provide a baseline configuration to all requests.
    HttpRequestInitializer requestInitializer =
        request -> {
          new HttpCredentialsAdapter(credential).initialize(request);
          request.setConnectTimeout(60000); // 1 minute connect timeout
          request.setReadTimeout(60000); // 1 minute read timeout
        };

    // Build the client for interacting with the service.
    return new CloudHealthcare.Builder(HTTP_TRANSPORT, JSON_FACTORY, requestInitializer)
        .setApplicationName("your-application-name")
        .build();
  }
}

Node.js

const google = require('@googleapis/healthcare');
const healthcare = google.healthcare({
  version: 'v1',
  auth: new google.auth.GoogleAuth({
    scopes: ['https://www.googleapis.com/auth/cloud-platform'],
  }),
});

const getDataset = async () => {
  // TODO(developer): uncomment these lines before running the sample
  // const cloudRegion = 'us-central1';
  // const projectId = 'adjective-noun-123';
  // const datasetId = 'my-dataset';
  const parent = `projects/${projectId}/locations/${cloudRegion}/datasets/${datasetId}`;
  const request = {name: parent};

  const dataset = await healthcare.projects.locations.datasets.get(request);
  console.log(dataset.data);
};

getDataset();

Python

# Imports the Dict type for runtime type hints.
from typing import Dict


def get_dataset(project_id: str, location: str, dataset_id: str) -> Dict[str, str]:
    """Gets any metadata associated with a dataset.

    See
    https://github.com/GoogleCloudPlatform/python-docs-samples/tree/main/healthcare/api-client/v1/datasets
    before running the sample.
    See https://googleapis.github.io/google-api-python-client/docs/dyn/healthcare_v1.projects.locations.datasets.html#get
    for the Python API reference.

    Args:
      project_id: The project ID or project number of the Google Cloud project you want
          to use.
      location: The name of the dataset's location.
      dataset_id: The name of the dataset to get.

    Returns:
      A dictionary representing a Dataset resource.
    """
    # Imports HttpError from the Google Python API client errors module.
    # Imports the Google API Discovery Service.
    from googleapiclient import discovery
    from googleapiclient.errors import HttpError

    api_version = "v1"
    service_name = "healthcare"
    # Returns an authorized API client by discovering the Healthcare API
    # and using GOOGLE_APPLICATION_CREDENTIALS environment variable.
    client = discovery.build(service_name, api_version)

    # TODO(developer): Uncomment these lines and replace with your values.
    # project_id = 'my-project'
    # location = 'us-central1'
    # dataset_id = 'my-dataset'
    dataset_name = f"projects/{project_id}/locations/{location}/datasets/{dataset_id}"

    request = client.projects().locations().datasets()

    try:
        dataset = request.get(name=dataset_name).execute()
        print(f"Name: {dataset.get('name')}")
        return dataset
    except HttpError as err:
        raise err

Listar conjuntos de dados

Os exemplos a seguir mostram como listar os conjuntos de dados no seu projeto.

Console

No console do Google Cloud, acesse a página Navegador.

Acessar o navegador

gcloud

Execute o comando gcloud healthcare datasets list.

Antes de usar os dados do comando abaixo, faça estas substituições:

  • LOCATION: o local do conjunto de dados;

Execute o seguinte comando:

Linux, macOS ou Cloud Shell

gcloud healthcare datasets list --location=LOCATION

Windows (PowerShell)

gcloud healthcare datasets list --location=LOCATION

Windows (cmd.exe)

gcloud healthcare datasets list --location=LOCATION

Você receberá uma resposta semelhante a esta

ID           LOCATION     TIMEZONE
DATASET_ID   LOCATION       TIME_ZONE

REST

Use o método projects.locations.datasets.list.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • PROJECT_ID: o ID do seu projeto do Google Cloud;
  • LOCATION: o local do conjunto de dados;

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets"

PowerShell

Execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets" | Select-Object -Expand Content

APIs Explorer

Abra a página de referência do método. O painel "APIs Explorer" é aberto no lado direito da página. Interaja com essa ferramenta para enviar solicitações. Preencha todos os campos obrigatórios e clique em Executar.

Você receberá uma resposta JSON semelhante a esta:

Go

import (
	"context"
	"fmt"
	"io"

	healthcare "google.golang.org/api/healthcare/v1"
)

// listDatasets prints a list of datasets to w.
func listDatasets(w io.Writer, projectID string, location string) error {
	ctx := context.Background()

	healthcareService, err := healthcare.NewService(ctx)
	if err != nil {
		return fmt.Errorf("healthcare.NewService: %w", err)
	}

	datasetsService := healthcareService.Projects.Locations.Datasets

	parent := fmt.Sprintf("projects/%s/locations/%s", projectID, location)

	resp, err := datasetsService.List(parent).Do()
	if err != nil {
		return fmt.Errorf("List: %w", err)
	}

	fmt.Fprintln(w, "Datasets:")
	for _, d := range resp.Datasets {
		fmt.Fprintln(w, d.Name)
	}

	return nil
}

Java

import com.google.api.client.http.HttpRequestInitializer;
import com.google.api.client.http.javanet.NetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.gson.GsonFactory;
import com.google.api.services.healthcare.v1.CloudHealthcare;
import com.google.api.services.healthcare.v1.CloudHealthcare.Projects.Locations.Datasets;
import com.google.api.services.healthcare.v1.CloudHealthcareScopes;
import com.google.api.services.healthcare.v1.model.Dataset;
import com.google.api.services.healthcare.v1.model.ListDatasetsResponse;
import com.google.auth.http.HttpCredentialsAdapter;
import com.google.auth.oauth2.GoogleCredentials;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class DatasetList {
  private static final JsonFactory JSON_FACTORY = new GsonFactory();
  private static final NetHttpTransport HTTP_TRANSPORT = new NetHttpTransport();

  public static void datasetList(String projectId, String regionId) throws IOException {
    // String projectId = "your-project-id";
    // String regionId = "us-central1";

    // Initialize the client, which will be used to interact with the service.
    CloudHealthcare client = createClient();

    // Results are paginated, so multiple queries may be required.
    String parentName = String.format("projects/%s/locations/%s", projectId, regionId);
    String pageToken = null;
    List<Dataset> datasets = new ArrayList<>();
    do {
      // Create request and configure any parameters.
      Datasets.List request =
          client
              .projects()
              .locations()
              .datasets()
              .list(parentName)
              .setPageSize(100) // Specify pageSize up to 1000
              .setPageToken(pageToken);

      // Execute response and collect results.
      ListDatasetsResponse response = request.execute();
      datasets.addAll(response.getDatasets());

      // Update the page token for the next request.
      pageToken = response.getNextPageToken();
    } while (pageToken != null);

    // Print results.
    System.out.printf("Retrieved %s datasets: \n", datasets.size());
    for (Dataset data : datasets) {
      System.out.println("\t" + data.toPrettyString());
    }
  }

  private static CloudHealthcare createClient() throws IOException {
    // Use Application Default Credentials (ADC) to authenticate the requests
    // For more information see https://cloud.google.com/docs/authentication/production
    GoogleCredentials credential =
        GoogleCredentials.getApplicationDefault()
            .createScoped(Collections.singleton(CloudHealthcareScopes.CLOUD_PLATFORM));

    // Create a HttpRequestInitializer, which will provide a baseline configuration to all requests.
    HttpRequestInitializer requestInitializer =
        request -> {
          new HttpCredentialsAdapter(credential).initialize(request);
          request.setConnectTimeout(60000); // 1 minute connect timeout
          request.setReadTimeout(60000); // 1 minute read timeout
        };

    // Build the client for interacting with the service.
    return new CloudHealthcare.Builder(HTTP_TRANSPORT, JSON_FACTORY, requestInitializer)
        .setApplicationName("your-application-name")
        .build();
  }
}

Node.js

const google = require('@googleapis/healthcare');
const healthcare = google.healthcare({
  version: 'v1',
  auth: new google.auth.GoogleAuth({
    scopes: ['https://www.googleapis.com/auth/cloud-platform'],
  }),
});

const listDatasets = async () => {
  // TODO(developer): uncomment these lines before running the sample
  // const cloudRegion = 'us-central1';
  // const projectId = 'adjective-noun-123';
  const parent = `projects/${projectId}/locations/${cloudRegion}`;
  const request = {parent};

  const dataset = await healthcare.projects.locations.datasets.list(request);
  console.log(dataset.data);
};

listDatasets();

Python

# Imports the Dict and List types for runtime type hints.
from typing import Dict, List


def list_datasets(project_id: str, location: str) -> List[Dict[str, str]]:
    """Lists the datasets in the project.

    See
    https://github.com/GoogleCloudPlatform/python-docs-samples/tree/main/healthcare/api-client/v1/datasets
    before running the sample.
    See https://googleapis.github.io/google-api-python-client/docs/dyn/healthcare_v1.projects.locations.datasets.html#list
    for the Python API reference.

    Args:
      project_id: The project ID or project number of the Google Cloud project you want
          to use.
      location: The name of the location where the datasets are located.

    Returns:
      A list of Dataset resources.
    """
    # Imports HttpError from the Google Python API client errors module.
    # Imports the Google API Discovery Service.
    from googleapiclient import discovery
    from googleapiclient.errors import HttpError

    api_version = "v1"
    service_name = "healthcare"
    # Returns an authorized API client by discovering the Healthcare API
    # and using GOOGLE_APPLICATION_CREDENTIALS environment variable.
    client = discovery.build(service_name, api_version)

    # TODO(developer): Uncomment these lines and replace with your values.
    # project_id = 'my-project'
    # location = 'us-central1'
    dataset_parent = f"projects/{project_id}/locations/{location}"

    datasets = []
    request = client.projects().locations().datasets().list(parent=dataset_parent)
    while request is not None:
        try:
            response = request.execute()
            if response and "datasets" in response:
                datasets.extend(response["datasets"])
            # Paginate over results until the list_next() function returns None.
            request = (
                client.projects()
                .locations()
                .datasets()
                .list_next(previous_request=request, previous_response=response)
            )

            for dataset in datasets:
                print(
                    f"Dataset: {dataset.get('name')}\nTime zone: {dataset.get('timeZone')}"
                )

            return datasets

        except HttpError as err:
            raise err

Excluir um conjunto de dados

Os exemplos a seguir mostram como excluir um conjunto de dados.

Console

  1. No console do Google Cloud, acesse a página Navegador.

    Acessar o navegador

  2. Na mesma linha do conjunto de dados, clique na opção Ações e selecione Excluir.

  3. Na caixa de diálogo de confirmação, insira o ID do conjunto de dados e clique em Excluir.

gcloud

Execute o comando gcloud healthcare datasets delete.

Antes de usar os dados do comando abaixo, faça estas substituições:

  • LOCATION: o local do conjunto de dados;
  • DATASET_ID: o ID do conjunto de dados;

Execute o seguinte comando:

Linux, macOS ou Cloud Shell

gcloud healthcare datasets delete DATASET_ID \
  --location=LOCATION

Windows (PowerShell)

gcloud healthcare datasets delete DATASET_ID `
  --location=LOCATION

Windows (cmd.exe)

gcloud healthcare datasets delete DATASET_ID ^
  --location=LOCATION

Para confirmar, digite Y.

A saída é esta:

Deleted dataset [DATASET_ID]

REST

Use o método projects.locations.datasets.delete.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • PROJECT_ID: o ID do seu projeto do Google Cloud;
  • LOCATION: o local do conjunto de dados;
  • DATASET_ID: o ID do conjunto de dados;

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID"

PowerShell

Execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://healthcare.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID" | Select-Object -Expand Content

APIs Explorer

Abra a página de referência do método. O painel "APIs Explorer" é aberto no lado direito da página. Interaja com essa ferramenta para enviar solicitações. Preencha todos os campos obrigatórios e clique em Executar.

Você receberá um código de status bem-sucedido (2xx) e uma resposta vazia.

Go

import (
	"context"
	"fmt"
	"io"

	healthcare "google.golang.org/api/healthcare/v1"
)

// deleteDataset deletes the given dataset.
func deleteDataset(w io.Writer, projectID, location, datasetID string) error {
	ctx := context.Background()

	healthcareService, err := healthcare.NewService(ctx)
	if err != nil {
		return fmt.Errorf("healthcare.NewService: %w", err)
	}

	datasetsService := healthcareService.Projects.Locations.Datasets

	name := fmt.Sprintf("projects/%s/locations/%s/datasets/%s", projectID, location, datasetID)
	if _, err := datasetsService.Delete(name).Do(); err != nil {
		return fmt.Errorf("Delete: %w", err)
	}

	fmt.Fprintf(w, "Deleted dataset: %q\n", name)
	return nil
}

Java

import com.google.api.client.http.HttpRequestInitializer;
import com.google.api.client.http.javanet.NetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.gson.GsonFactory;
import com.google.api.services.healthcare.v1.CloudHealthcare;
import com.google.api.services.healthcare.v1.CloudHealthcare.Projects.Locations.Datasets;
import com.google.api.services.healthcare.v1.CloudHealthcareScopes;
import com.google.auth.http.HttpCredentialsAdapter;
import com.google.auth.oauth2.GoogleCredentials;
import java.io.IOException;
import java.util.Collections;

public class DatasetDelete {
  private static final String DATASET_NAME = "projects/%s/locations/%s/datasets/%s";
  private static final JsonFactory JSON_FACTORY = new GsonFactory();
  private static final NetHttpTransport HTTP_TRANSPORT = new NetHttpTransport();

  public static void datasetDelete(String datasetName) throws IOException {
    // String datasetName =
    //     String.format(DATASET_NAME, "your-project-id", "your-region-id", "your-dataset-id");

    // Initialize the client, which will be used to interact with the service.
    CloudHealthcare client = createClient();

    // Create request and configure any parameters.
    Datasets.Delete request = client.projects().locations().datasets().delete(datasetName);

    // Execute the request and process the results.
    request.execute();
    System.out.println("Dataset deleted.");
  }

  private static CloudHealthcare createClient() throws IOException {
    // Use Application Default Credentials (ADC) to authenticate the requests
    // For more information see https://cloud.google.com/docs/authentication/production
    GoogleCredentials credential =
        GoogleCredentials.getApplicationDefault()
            .createScoped(Collections.singleton(CloudHealthcareScopes.CLOUD_PLATFORM));

    // Create a HttpRequestInitializer, which will provide a baseline configuration to all requests.
    HttpRequestInitializer requestInitializer =
        request -> {
          new HttpCredentialsAdapter(credential).initialize(request);
          request.setConnectTimeout(60000); // 1 minute connect timeout
          request.setReadTimeout(60000); // 1 minute read timeout
        };

    // Build the client for interacting with the service.
    return new CloudHealthcare.Builder(HTTP_TRANSPORT, JSON_FACTORY, requestInitializer)
        .setApplicationName("your-application-name")
        .build();
  }
}

Node.js

const google = require('@googleapis/healthcare');
const healthcare = google.healthcare({
  version: 'v1',
  auth: new google.auth.GoogleAuth({
    scopes: ['https://www.googleapis.com/auth/cloud-platform'],
  }),
});

const deleteDataset = async () => {
  // TODO(developer): uncomment these lines before running the sample
  // const cloudRegion = 'us-central1';
  // const projectId = 'adjective-noun-123';
  // const datasetId = 'my-dataset';
  const parent = `projects/${projectId}/locations/${cloudRegion}/datasets/${datasetId}`;
  const request = {name: parent};

  await healthcare.projects.locations.datasets.delete(request);
  console.log(`Deleted dataset: ${datasetId}`);
};

deleteDataset();

Python

def delete_dataset(project_id: str, location: str, dataset_id: str) -> None:
    """Deletes a dataset.

    See
    https://github.com/GoogleCloudPlatform/python-docs-samples/tree/main/healthcare/api-client/v1/datasets
    before running the sample.
    See https://googleapis.github.io/google-api-python-client/docs/dyn/healthcare_v1.projects.locations.datasets.html#delete
    for the Python API reference.

    Args:
      project_id: The project ID or project number of the Google Cloud project you want
          to use.
      location: The name of the dataset's location.
      dataset_id: The name of the dataset to delete.

    Returns:
      An empty response body.
    """
    # Imports HttpError from the Google Python API client errors module.
    # Imports the Google API Discovery Service.
    from googleapiclient import discovery
    from googleapiclient.errors import HttpError

    api_version = "v1"
    service_name = "healthcare"
    # Returns an authorized API client by discovering the Healthcare API
    # and using GOOGLE_APPLICATION_CREDENTIALS environment variable.
    client = discovery.build(service_name, api_version)

    # TODO(developer): Uncomment these lines and replace with your values.
    # project_id = 'my-project'
    # location = 'us-central1'
    # dataset_id = 'my-dataset'
    dataset_name = f"projects/{project_id}/locations/{location}/datasets/{dataset_id}"

    request = client.projects().locations().datasets().delete(name=dataset_name)

    try:
        request.execute()
        print(f"Deleted dataset: {dataset_id}")
    except HttpError as err:
        raise err

A seguir