本頁面將介紹串流回答方法。
串流回答方法與 answer 方法有許多相同的功能,但多了一項額外功能:串流。串流傳送答案時,系統會將生成的答案分成多個部分,然後依序傳送。
如果生成的答案很長,一次傳送整個答案會造成延遲,這時逐句顯示功能就特別實用。串流回答可減少延遲。
限制
串流回答方法與回答方法的功能相同,但有以下例外狀況:
重述步驟數為 1。您無法停用重述功能,也無法變更步驟數上限。
只有 Gemini 模型可搭配串流回覆方法使用。 如需型號清單,請參閱「適用型號」。
逐句顯示回覆
下列指令說明如何呼叫 streaming answer 方法,並以一系列 JSON 回應的形式傳回生成的答案。通常每個回覆會包含一個答案句子。
這項基本指令只會顯示必要輸入內容。選項保留預設值。
如需其他選項的範例,請參閱「取得答案和後續追蹤」。部分答案選項不適用於答案串流;請參閱本頁的限制。
REST
如要搜尋並取得串流生成的答案,請按照下列步驟操作:
執行下列 curl 指令:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/APP_ID/servingConfigs/default_search:streamAnswer" \ -d '{ "query": { "text": "QUERY"} }'
更改下列內容:
PROJECT_ID
:您的 Google Cloud 專案 ID。APP_ID
:要查詢的 Vertex AI Search 應用程式 ID。QUERY
:包含問題或搜尋查詢的任意文字字串。例如「哪個資料庫比較快,是 BigQuery 還是 Spanner?」
指令和部分結果範例
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:streamAnswer" \ -d '{ "query":{"text":"Which database is faster, bigquery or spanner?"} }'
[{ "answer": { "state": "STREAMING", "steps": [ { "description": "Rephrase the query and search.", "actions": [ { "searchAction": { "query": " What is the performance of Spanner?" }, "observation": { "searchResults": [ { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/1a9f55e00c42c06ca97bf5a5868dbcdc", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/answer", "title": "Get answers and follow-ups", "snippetInfo": [ { "snippet": "QUERY : a free-text string that contains the question or search query. For example, "Compare the BigQuery and \u003cb\u003eSpanner\u003c/b\u003e databases?". Example command and result.", "snippetStatus": "SUCCESS" } ] }, ... { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/b95bb201a0adb24f769627f56cf34405", "uri": "https://abc.xyz/assets/investor/static/pdf/2017_Q1_Earnings_Transcript.pdf", "title": "\u200b \u200b", "snippetInfo": [ { "snippet": "well as Hardware related costs, reflecting the continued strong \u003cb\u003eperformance\u003c/b\u003e of our new Made by ... We introduced dozens of new products, including \u003cb\u003eSpanner\u003c/b\u003e, a ...", "snippetStatus": "SUCCESS" } ] } ] } }, { "searchAction": { "query": " What is the performance of BigQuery?" }, "observation": { "searchResults": [ { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/18bcc727bfd6a3d1be0aa4bd49fe2c50", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/evaluate-search-quality", "title": "Evaluate search quality", "snippetInfo": [ { "snippet": "You can evaluate the \u003cb\u003eperformance\u003c/b\u003e of generic search apps that contain structured, unstructured, and website data. ... Import from \u003cb\u003eBigQuery\u003c/b\u003e: import \u003cb\u003eBigQuery\u003c/b\u003e data ...", "snippetStatus": "SUCCESS" } ] }, ... { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/1a9f55e00c42c06ca97bf5a5868dbcdc", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/answer", "title": "Get answers and follow-ups", "snippetInfo": [ { "snippet": "QUERY : a free-text string that contains the question or search query. For example, "Compare the \u003cb\u003eBigQuery\u003c/b\u003e and Spanner databases?". Example command and result.", "snippetStatus": "SUCCESS" } ] } ] } } ] } ] } } , { "answer": { "state": "STREAMING", "references": [ { "chunkInfo": { "content": "Example command and partial result curl -X POST -H \"Authorization: Bearer $(gcloud auth print-access-token)\" -H \"Content-Type: application/json\" \"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/servingConfigs/default_search:answer\" -d '{ \"query\": { \"text\": \"Compare bigquery with spanner database?\"} \"queryUnderstandingSpec\": { \"queryRephraserSpec\": { \"disable\": true } } }' { \"answer\": { \"state\": \"SUCCEEDED\", \"answerText\": \"You can compare BigQuery and Spanner databases using the following criteria:\\n\\n* **Pricing:** BigQuery is priced per GB of data processed, while Spanner is priced per hour of compute time.\\n* **Performance:** BigQuery is designed for fast analytics, while Spanner is designed for high availability and scalability.\\n* **Features:** BigQuery supports a wide range of features, including SQL, machine learning, and streaming. ", "documentMetadata": { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/1a9f55e00c42c06ca97bf5a5868dbcdc", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/answer", "title": "Get answers and follow-ups" } } }, ... { "chunkInfo": { "content": "Here is an example of a summary, with citations and citation metadata, returned at the end of a search response: See more code actions. Dismiss View Light code theme Dark code theme \"summary\": { \"summaryText\": \"BigQuery is Google Cloud's fully managed and completely serverless enterprise data warehouse [1]. BigQuery supports all data types, works across clouds, and has built-in machine learning and business intelligence, all within a unified platform [2, 3].\", \"summaryWithMetadata\": { \"summary\": \"BigQuery is Google Cloud's fully managed and completely serverless enterprise data warehouse. ", "documentMetadata": { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7ba2e8666f5514b5bc14f5e300d7678", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/get-search-summaries", "title": "Get search summaries" } } } ] } } , { "answer": { "state": "STREAMING", "answerText": "Span" } } , { "answer": { "state": "STREAMING", "answerText": "ner is Google's large-scale database that scales 20 times better than" } } , ... { "answer": { "state": "STREAMING", "answerText": " Web Services, and on-premises data sources. " } } , { "answer": { "state": "STREAMING", "answerText": "Spanner is a distributed, strongly consistent, SQL database designed to scale to 10 million servers. \n" } } , { "answer": { "state": "SUCCEEDED", "answerText": "Spanner is Google's large-scale database that scales 20 times better than any competitor. Spanner is designed for high availability and scalability, while BigQuery is designed for fast analytics. BigQuery is a serverless, highly scalable, and cost-effective cloud data warehouse that enables businesses to analyze all their data very quickly. BigQuery is a very powerful tool that can be used to analyze data from many different sources, including Google Cloud Platform, Amazon Web Services, and on-premises data sources. Spanner is a distributed, strongly consistent, SQL database designed to scale to 10 million servers. \n", "references": [ { "chunkInfo": { "content": "Example command and partial result curl -X POST -H \"Authorization: Bearer $(gcloud auth print-access-token)\" -H \"Content-Type: application/json\" \"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/servingConfigs/default_search:answer\" -d '{ \"query\": { \"text\": \"Compare bigquery with spanner database?\"} \"queryUnderstandingSpec\": { \"queryRephraserSpec\": { \"disable\": true } } }' { \"answer\": { \"state\": \"SUCCEEDED\", \"answerText\": \"You can compare BigQuery and Spanner databases using the following criteria:\\n\\n* **Pricing:** BigQuery is priced per GB of data processed, while Spanner is priced per hour of compute time.\\n* **Performance:** BigQuery is designed for fast analytics, while Spanner is designed for high availability and scalability.\\n* **Features:** BigQuery supports a wide range of features, including SQL, machine learning, and streaming. ", "documentMetadata": { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/1a9f55e00c42c06ca97bf5a5868dbcdc", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/answer", "title": "Get answers and follow-ups" } } }, { "chunkInfo": { "content": "Second, we also give them the ability to build applications using a set of technology that can run on any environment that they have. When we say on any environment - at their premise, on our cloud or on any other cloud. So, in other words, they can learn once, write once, deploy anywhere; and we make money no matter where they deploy. An example of that is a recent product we introduced called AlloyDB. It's the fastest-performing relational database in the market. We run it in all four environments: Our cloud, on-premise and on other clouds. And it's the only relational database that can run in any of those configurations. You see that in our adoption, both at the top end of the market where a system - for example, like Spanner, which is our large-scale database - scales 20 times better than the largest scalable system of any competitor. So for high-end, we work extremely well. And, also, because we made it so easy to use, startups and small businesses are growing very quickly in their adoption of our platform. When we introduced our AI systems, we introduced a platform called Vertex AI. ", "documentMetadata": { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/8ad08d0844d601733e135381512e2a16", "uri": "http://abc.xyz/thomas-kurian-ceo-google-cloud-at-the-goldman-sachs-2023-communacopia-technology-conference-on-september-7th-2023", "title": "Thomas Kurian, CEO, Google Cloud at the Goldman Sachs 2023 Communacopia + Technology Conference on September 7th, 2023 - Alphabet Investor Relations" } } }, ... { "chunkInfo": { "content": "BigQuery is also integrated with other Google Cloud services, such as Google Kubernetes Engine, Cloud Data Fusion, and Cloud Dataproc, making it easy to build and deploy data pipelines. Here are some of the benefits of using BigQuery: * **Fast and scalable:** BigQuery can process petabytes of data very quickly, and it can scale to handle even the most demanding workloads. * **Cost-effective:** BigQuery is a very cost-effective way to store and analyze data. You only pay for the data that you use, and there are no upfront costs or commitments. * **Secure:** BigQuery is a secure platform that meets the needs of even the most security-conscious organizations. * **Easy to use:** BigQuery is easy to use, even for non-technical users. It has a simple and intuitive user interface, and it supports a variety of data sources. * **Integrated with other Google Cloud services:** BigQuery is integrated with other Google Cloud services, making it easy to build and deploy data pipelines. If you are looking for a fast, scalable, and cost-effective way to analyze your data, then BigQuery is a great option. ", "documentMetadata": { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7ba2e8666f5514b5bc14f5e300d7678", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/get-search-summaries", "title": "Get search summaries" } } }, { "chunkInfo": { "content": "Here is an example of a summary, with citations and citation metadata, returned at the end of a search response: See more code actions. Dismiss View Light code theme Dark code theme \"summary\": { \"summaryText\": \"BigQuery is Google Cloud's fully managed and completely serverless enterprise data warehouse [1]. BigQuery supports all data types, works across clouds, and has built-in machine learning and business intelligence, all within a unified platform [2, 3].\", \"summaryWithMetadata\": { \"summary\": \"BigQuery is Google Cloud's fully managed and completely serverless enterprise data warehouse. ", "documentMetadata": { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7ba2e8666f5514b5bc14f5e300d7678", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/get-search-summaries", "title": "Get search summaries" } } } ], "steps": [ { "description": "Rephrase the query and search.", "actions": [ { "searchAction": { "query": " What is the performance of Spanner?" }, "observation": { "searchResults": [ { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/1a9f55e00c42c06ca97bf5a5868dbcdc", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/answer", "title": "Get answers and follow-ups", "snippetInfo": [ { "snippet": "QUERY : a free-text string that contains the question or search query. For example, "Compare the BigQuery and \u003cb\u003eSpanner\u003c/b\u003e databases?". Example command and result.", "snippetStatus": "SUCCESS" } ] }, { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/9d022f7bdf24bac6714a9cf61a5458c7", "uri": "https://abc.xyz/assets/87/4c/162ca71d4178a3f4d39002467439/thomas-kurian-goldman-sachs-090723.pdf", "title": "Thomas Kurian Goldman Sachs 090723", "snippetInfo": [ { "snippet": "2X better training \u003cb\u003eperformance\u003c/b\u003e per dollar1 compared to a leading cloud alternative. More than 70% of gen AI unicorns are Google Cloud customers. Best ...", "snippetStatus": "SUCCESS" } ] }, ... { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/20641e370fa86c78f1c81f3dab22efe1", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/release-notes", "title": "AI Applications release notes | Google Cloud", "snippetInfo": [ { "snippet": "Generative answers have been updated with \u003cb\u003eperformance\u003c/b\u003e improvements. ... This lets you assess your search engine's \u003cb\u003eperformance\u003c/b\u003e ... Importing data from \u003cb\u003eSpanner\u003c/b\u003e, Cloud ...", "snippetStatus": "SUCCESS" } ] }, { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/b95bb201a0adb24f769627f56cf34405", "uri": "https://abc.xyz/assets/investor/static/pdf/2017_Q1_Earnings_Transcript.pdf", "title": "\u200b \u200b", "snippetInfo": [ { "snippet": "well as Hardware related costs, reflecting the continued strong \u003cb\u003eperformance\u003c/b\u003e of our new Made by ... We introduced dozens of new products, including \u003cb\u003eSpanner\u003c/b\u003e, a ...", "snippetStatus": "SUCCESS" } ] } ] } }, { "searchAction": { "query": " What is the performance of BigQuery?" }, "observation": { "searchResults": [ { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/18bcc727bfd6a3d1be0aa4bd49fe2c50", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/evaluate-search-quality", "title": "Evaluate search quality", "snippetInfo": [ { "snippet": "You can evaluate the \u003cb\u003eperformance\u003c/b\u003e of generic search apps that contain structured, unstructured, and website data. ... Import from \u003cb\u003eBigQuery\u003c/b\u003e: import \u003cb\u003eBigQuery\u003c/b\u003e data ...", "snippetStatus": "SUCCESS" } ] }, { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/2a3221d40533a4bdaf35778962a2a079", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/check-media-data-quality", "title": "Check data quality for media recommendations", "snippetInfo": [ { "snippet": "... model that will result in \u003cb\u003eperformance\u003c/b\u003e issue if not met for all media recommendations models and all business objectives.", "condition": { "expression ...", "snippetStatus": "SUCCESS" } ] }, ... { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/18c258b9c770f4d762e6233d1a1bc81c", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/user-events", "title": "About user events", "snippetInfo": [ { "snippet": "This section provides the data formats for each event type supported by media recommendations. Examples for JavaScript Pixel are provided. For \u003cb\u003eBigQuery\u003c/b\u003e, the ...", "snippetStatus": "SUCCESS" } ] }, { "document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/1a9f55e00c42c06ca97bf5a5868dbcdc", "uri": "https://cloud.google.com/generative-ai-app-builder/docs/answer", "title": "Get answers and follow-ups", "snippetInfo": [ { "snippet": "QUERY : a free-text string that contains the question or search query. For example, "Compare the \u003cb\u003eBigQuery\u003c/b\u003e and Spanner databases?". Example command and result.", "snippetStatus": "SUCCESS" } ] } ] } } ] } ] } }在本例中,查詢「哪個資料庫速度較快,是 BigQuery 還是 Spanner?」的答案會顯示在一連串的 JSON 輸出內容中。最終輸出內容會進入
SUCCEEDED
狀態,並包含完整答案。在本例中,
steps
和references
串流回應會顯示在AnswerText
串流回應之前。但實際情況可能並非總是如此。如果您要剖析輸出內容,請勿假設steps
和references
回應會先於AnswerText
回應。
其他範例
「串流傳輸回覆」中顯示的基本指令是最簡單的指令,未指定任何選項。不過,您可以套用 answer 方法提供的相同選項,但須遵守本頁列出的限制。
串流回答也可以搭配後續追蹤工作階段使用。