Clasificar documentos

Clasificar documentos

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"

client = discoveryengine.RankServiceClient()

# The full resource name of the ranking config.
# Format: projects/{project_id}/locations/{location}/rankingConfigs/default_ranking_config
ranking_config = client.ranking_config_path(
    project=project_id,
    location="global",
    ranking_config="default_ranking_config",
)
request = discoveryengine.RankRequest(
    ranking_config=ranking_config,
    model="semantic-ranker-512@latest",
    top_n=10,
    query="What is Google Gemini?",
    records=[
        discoveryengine.RankingRecord(
            id="1",
            title="Gemini",
            content="The Gemini zodiac symbol often depicts two figures standing side-by-side.",
        ),
        discoveryengine.RankingRecord(
            id="2",
            title="Gemini",
            content="Gemini is a cutting edge large language model created by Google.",
        ),
        discoveryengine.RankingRecord(
            id="3",
            title="Gemini Constellation",
            content="Gemini is a constellation that can be seen in the night sky.",
        ),
    ],
)

response = client.rank(request=request)

# Handle the response
print(response)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.