Importa documenti da BigQuery
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Importare documenti da BigQuery
Per saperne di più
Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:
Esempio di codice
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis content provides a Python code sample for importing documents into a data store from BigQuery using the Vertex AI Agent Builder.\u003c/p\u003e\n"],["\u003cp\u003eIt uses the \u003ccode\u003ediscoveryengine\u003c/code\u003e library to create a client and define a request for importing documents, specifying details such as the project ID, location, data store ID, and BigQuery dataset and table information.\u003c/p\u003e\n"],["\u003cp\u003eThe code demonstrates how to set up authentication with Application Default Credentials and handles the result of the operation after completion.\u003c/p\u003e\n"],["\u003cp\u003eThe code sample supports both full and incremental reconciliation modes, allowing for complete data replacement or data additions, respectively.\u003c/p\u003e\n"],["\u003cp\u003eAdditional documentation is available on creating a search data store, and refreshing structured and unstructured data, as well as a reference to the Vertex AI Agent Builder Python API and the Google Cloud sample browser.\u003c/p\u003e\n"]]],[],null,["# Import documents from BigQuery\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Create a custom recommendations data store](/generative-ai-app-builder/docs/create-data-store-recommendations)\n- [Create a search data store](/generative-ai-app-builder/docs/create-data-store-es)\n- [Refresh structured and unstructured data](/agentspace/docs/refresh-data)\n- [Refresh structured and unstructured data](/generative-ai-app-builder/docs/refresh-data)\n\nCode sample\n-----------\n\n### Python\n\n\nFor more information, see the\n[AI Applications Python API\nreference documentation](/python/docs/reference/discoveryengine/latest).\n\n\nTo authenticate to AI Applications, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n from google.api_core.client_options import ClientOptions\n from google.cloud import discoveryengine\n\n # TODO(developer): Uncomment these variables before running the sample.\n # project_id = \"YOUR_PROJECT_ID\"\n # location = \"YOUR_LOCATION\" # Values: \"global\"\n # data_store_id = \"YOUR_DATA_STORE_ID\"\n # bigquery_dataset = \"YOUR_BIGQUERY_DATASET\"\n # bigquery_table = \"YOUR_BIGQUERY_TABLE\"\n\n # For more information, refer to:\n # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store\n client_options = (\n ClientOptions(api_endpoint=f\"{location}-discoveryengine.googleapis.com\")\n if location != \"global\"\n else None\n )\n\n # Create a client\n client = discoveryengine.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.services.document_service.DocumentServiceClient.html(client_options=client_options)\n\n # The full resource name of the search engine branch.\n # e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}\n parent = client.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.services.document_service.DocumentServiceClient.html#google_cloud_discoveryengine_v1_services_document_service_DocumentServiceClient_branch_path(\n project=project_id,\n location=location,\n data_store=data_store_id,\n branch=\"default_branch\",\n )\n\n request = discoveryengine.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.ImportDocumentsRequest.html(\n parent=parent,\n bigquery_source=discoveryengine.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.BigQuerySource.html(\n project_id=project_id,\n dataset_id=bigquery_dataset,\n table_id=bigquery_table,\n data_schema=\"custom\",\n ),\n # Options: `FULL`, `INCREMENTAL`\n reconciliation_mode=discoveryengine.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.ImportDocumentsRequest.html.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.ImportDocumentsRequest.ReconciliationMode.html.INCREMENTAL,\n )\n\n # Make the request\n operation = client.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.services.document_service.DocumentServiceClient.html#google_cloud_discoveryengine_v1_services_document_service_DocumentServiceClient_import_documents(request=request)\n\n print(f\"Waiting for operation to complete: {operation.operation.name}\")\n response = operation.result()\n\n # After the operation is complete,\n # get information from operation metadata\n metadata = discoveryengine.https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.ImportDocumentsMetadata.html(operation.metadata)\n\n # Handle the response\n print(response)\n print(metadata)\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=genappbuilder)."]]