Generación fundamentada con datos intercalados y de Vertex AI Search

Generación fundamentada con datos intercalados y de Vertex AI Search

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Python

Para obtener más información, consulta la documentación de referencia de la API de Python del compilador de agentes de Vertex AI.

Para autenticarte en Vertex AI Agent Builder, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_number = "YOUR_PROJECT_NUMBER"
# engine_id = "YOUR_ENGINE_ID"

client = discoveryengine.GroundedGenerationServiceClient()

request = discoveryengine.GenerateGroundedContentRequest(
    # The full resource name of the location.
    # Format: projects/{project_number}/locations/{location}
    location=client.common_location_path(project=project_number, location="global"),
    generation_spec=discoveryengine.GenerateGroundedContentRequest.GenerationSpec(
        model_id="gemini-1.5-flash",
    ),
    # Conversation between user and model
    contents=[
        discoveryengine.GroundedGenerationContent(
            role="user",
            parts=[
                discoveryengine.GroundedGenerationContent.Part(
                    text="How did Google do in 2020? Where can I find BigQuery docs?"
                )
            ],
        )
    ],
    system_instruction=discoveryengine.GroundedGenerationContent(
        parts=[
            discoveryengine.GroundedGenerationContent.Part(
                text="Add a smiley emoji after the answer."
            )
        ],
    ),
    # What to ground on.
    grounding_spec=discoveryengine.GenerateGroundedContentRequest.GroundingSpec(
        grounding_sources=[
            discoveryengine.GenerateGroundedContentRequest.GroundingSource(
                inline_source=discoveryengine.GenerateGroundedContentRequest.GroundingSource.InlineSource(
                    grounding_facts=[
                        discoveryengine.GroundingFact(
                            fact_text=(
                                "The BigQuery documentation can be found at https://cloud.google.com/bigquery/docs/introduction"
                            ),
                            attributes={
                                "title": "BigQuery Overview",
                                "uri": "https://cloud.google.com/bigquery/docs/introduction",
                            },
                        ),
                    ]
                ),
            ),
            discoveryengine.GenerateGroundedContentRequest.GroundingSource(
                search_source=discoveryengine.GenerateGroundedContentRequest.GroundingSource.SearchSource(
                    # The full resource name of the serving config for a Vertex AI Search App
                    serving_config=f"projects/{project_number}/locations/global/collections/default_collection/engines/{engine_id}/servingConfigs/default_search",
                ),
            ),
        ]
    ),
)
response = client.generate_grounded_content(request)

# Handle the response
print(response)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud , consulta el navegador de muestras deGoogle Cloud .