本页介绍了如何使用 Google Cloud 控制台预览建议,以及 使用 API 获取推荐结果。如需查看 API 示例,请参阅“REST”标签页 可帮助您将推荐内容整合到您的应用中。
您使用的流程取决于您想要的推荐类型以及推荐应用关联的数据存储类型:
获取媒体内容推荐
控制台
如需使用 Google Cloud 控制台预览媒体推荐,请按以下步骤操作:
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击要预览推荐的应用的名称。
依次点击配置 > 训练。如果准备好查询为 OK,则表示应用可以预览。
点击预览。
点击文档 ID 字段。系统会显示文档 ID 列表。
点击您要获取推荐的文档的 ID。或者,在文档 ID 字段中输入文档 ID。
点击选择服务配置,然后选择要预览的服务配置。
可选:输入用户的访问者 ID(也称为伪用户 ID) 您已为其收集用户事件的对象如果您将此字段留空或输入不存在的访问者 ID,则会以新用户身份预览建议。
点击获取推荐。系统会显示推荐的文档列表。
点击所需文档即可获取其详细信息。
REST
如需使用此 API 获取媒体推荐,请使用 servingConfigs.recommend
方法:
找到您的引擎 ID 和服务配置 ID。如果您已拥有引擎 ID 和广告投放配置 ID,请跳至第 2 步。
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击该应用的名称。
在导航窗格中,点击配置。
如果您只有在创建应用时自动创建的服务配置,则您的服务配置 ID 和引擎 ID 相同。跳转到下一步。
如果投放配置标签页中列出了多个投放配置,请找到您要获取建议的投放配置。您的服务配置 ID 是 ID 列中的值。
如果您删除了在创建应用时自动创建的投放配置,并且目前只有一个手动创建的投放配置,请前往预览页面,然后点击选择投放配置以查看投放配置 ID。
点击训练标签页。您的引擎 ID 是“应用 ID”行中的值。
确保应用已准备好进行预览:
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击该应用的名称。
点击配置 >训练。如果可以查询,则表示应用可以预览。
获取推荐内容。
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json; charset=utf-8" \ -d '{ "validateOnly": false, "userEvent": { "eventType": "view-item", "userPseudoId": "USER_PSEUDO_ID", "documents": [{ "id": "DOCUMENT_ID" }], "filter": "FILTER_STRING" } }' \ "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/dataStores/DATA_STORE_ID/servingConfigs/SERVING_CONFIG_ID:recommend"
- PROJECT_ID:您的项目的 ID。
- DATA_STORE_ID:数据存储区的 ID。
- DOCUMENT_ID:您要预览的文档的 ID 建议。请使用您在 提取数据的时间
- USER_PSEUDO_ID:用户的假名化标识符。您 可以为此字段使用 HTTP Cookie,该 Cookie 可唯一标识 单个设备上的访问者。请勿为多位用户将此字段设置为相同的标识符,否则系统会合并他们的事件历史记录,从而降低模型质量。请勿包含个人身份信息 个人身份信息 (PII) 的。
- SERVING_CONFIG_ID:您的广告投放配置的 ID。
- FILTER:可选。一个文本字段,可让您使用过滤条件表达式语法按指定的一组字段进行过滤。默认值为空字符串,表示不应用任何过滤条件。如需了解详情,请参阅过滤建议。
您应该会看到如下所示的结果:
{ "results": [{"id": "sample-id-1"}, {"id": "sample-id-2"}], "attributionToken": "abc123" }
Google 建议将归因令牌(我们会在每个搜索响应和推荐中添加)与用户对这些搜索响应和推荐采取的操作相关联。这有助于随着时间的推移提高搜索回答和建议的质量。为此,请将 attributionToken
值附加到您在网站上显示的每个搜索结果或推荐链接的网址中,例如 https://www.example.com/54321/?rtoken=abc123
。当用户点击其中一个链接时,请在您记录的用户事件中添加 attributionToken
值。
获取针对包含结构化数据的应用提供的一般建议
控制台
如需使用 Google Cloud 控制台预览结构化应用的通用建议,请按以下步骤操作:
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击要预览推荐的应用的名称。
点击预览。
点击文档 ID 字段。系统会显示文档 ID 列表。
点击您要获取推荐的文档的 ID。或者,在文档 ID 字段中输入文档 ID。
点击获取推荐。系统会显示推荐的文档列表。
点击所需文档即可获取其详细信息。
REST
如需使用此 API 为包含结构化数据的应用获取通用建议,请使用 servingConfigs.recommend
方法:
找到您的引擎 ID。如果您已有引擎 ID,请跳至第 2 步。
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击该应用的名称。
从 Google Cloud 控制台的网址中获取引擎 ID。它是
engines/
和/data
之间的文本。例如,如果网址包含gen-app-builder/engines/demo_1234567890123/data/records
则引擎 ID 为
demo_1234567890123
。
查找数据存储区 ID。如果您已有数据存储区 ID,请跳至下一步。
在 Google Cloud 控制台中,前往 Agent Builder 页面,然后 在导航菜单中,点击 Data Stores。
点击您的数据存储区的名称。
在数据存储区的数据页面上,获取数据存储区 ID。
通过轮询
GetEngine
,确保您的引擎已准备好进行预览 方法,直到返回"servingState":"ACTIVE"
。此时,引擎会 可以进行预览了。curl -X GET \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/ENGINE_ID
- PROJECT_ID:您的项目的 ID。
- ENGINE_ID:引擎的 ID。
获取推荐内容。
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ -d '{ "userEvent": { "eventType":"view-item", "userPseudoId":"USER_PSEUDO_ID", "documents":[{"id":"DOCUMENT_ID"}]}}' \ "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/dataStores/DATA_STORE_ID/servingConfigs/SERVING_CONFIG_ID:recommend"
- PROJECT_ID:您的项目的 ID。
- DATA_STORE_ID:数据存储区的 ID。
- DOCUMENT_ID:您要预览的文档的 ID 建议。请使用您在 提取数据的时间
- USER_PSEUDO_ID:用户的假名化标识符。您可以为此字段使用 HTTP Cookie,该 Cookie 可唯一标识单个设备上的访问者。请勿为多位用户将此字段设置为相同的标识符,否则系统会合并他们的事件历史记录,从而降低模型质量。请勿包含个人身份信息 个人身份信息 (PII) 的。
- SERVING_CONFIG_ID:您的广告投放配置的 ID。您的 服务配置 ID 与您的引擎 ID 相同,因此请使用您的引擎 ID 此处。
C#
如需了解详情,请参阅 Vertex AI Agent Builder C# API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Go
有关详情,请参阅 Vertex AI Agent Builder Go API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Java
有关详情,请参阅 Vertex AI Agent Builder Java API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Node.js
有关详情,请参阅 Vertex AI Agent Builder Node.js API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
PHP
有关详情,请参阅 Vertex AI Agent Builder PHP API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Python
有关详情,请参阅 Vertex AI Agent Builder Python API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Ruby
有关详情,请参阅 Vertex AI Agent Builder Ruby API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
针对包含非结构化数据的应用获取一般推荐
控制台
如需使用 Google Cloud 控制台预览通用建议,请按以下步骤操作:
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击要预览推荐的应用的名称。
点击预览。
点击 URI 字段。此时将显示 URI 列表。
点击要获取建议的文档的 URI。 或者,在 URI 字段中输入 URI。
点击获取推荐。推荐文档的 URI 列表 。
点击 URI 即可查看文档。
REST
要使用该 API 为包含非结构化数据的应用获取一般推荐, 请按以下步骤操作:
找到您的引擎 ID。如果您已有引擎 ID,请跳至第 2 步。
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击应用名称。
从 Google Cloud 控制台的网址中获取引擎 ID。它是
engines/
和/data
之间的文本。例如,如果网址包含gen-app-builder/engines/demo_1234567890123/data/records
则引擎 ID 为
demo_1234567890123
。
查找数据存储区 ID。如果您已有数据存储区 ID,请跳至下一步。
在 Google Cloud 控制台中,前往 Agent Builder 页面,然后 在导航菜单中,点击 Data Stores。
点击您的数据存储区的名称。
在数据存储区的数据页面上,获取数据存储区 ID。
通过轮询
GetEngine
,确保您的引擎已准备好进行预览 方法,直到返回"servingState":"ACTIVE"
。此时,引擎会 可以进行预览了。curl -X GET \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/ENGINE_ID
- PROJECT_ID:您的项目的 ID。
- ENGINE_ID:引擎的 ID。
获取推荐内容。
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ -d '{ "userEvent": { "eventType":"view-item", "userPseudoId":"USER_PSEUDO_ID", "documents":[{"id":"DOCUMENT_ID"}]}}' \ "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/dataStores/DATA_STORE_ID/servingConfigs/SERVING_CONFIG_ID:recommend"
- PROJECT_ID:您的项目的 ID。
- DATA_STORE_ID:与引擎关联的数据存储区的 ID。
- DOCUMENT_ID:您要预览建议的文档的 ID。请使用您当时提供的文件 ID 您注入了数据
- USER_PSEUDO_ID:用户的假名化标识符。您可以为此字段使用 HTTP Cookie,该 Cookie 可唯一标识单个设备上的访问者。请勿将此字段设置为相同的值 标识符 - 这会合并他们的事件历史记录 并降低模型质量。请勿包含个人身份信息 个人身份信息 (PII) 的。
- SERVING_CONFIG_ID:您的广告投放配置的 ID。您的 服务配置 ID 与您的引擎 ID 相同,因此请使用您的引擎 ID 此处。
C#
如需了解详情,请参阅 Vertex AI Agent Builder C# API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Go
如需了解详情,请参阅 Vertex AI Agent Builder Go API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Java
有关详情,请参阅 Vertex AI Agent Builder Java API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Node.js
如需了解详情,请参阅 Vertex AI Agent Builder Node.js API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
PHP
如需了解详情,请参阅 Vertex AI Agent Builder PHP API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Python
有关详情,请参阅 Vertex AI Agent Builder Python API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Ruby
如需了解详情,请参阅 Vertex AI Agent Builder Ruby API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
针对包含网站数据的应用获取一般性建议
控制台
如需使用 Google Cloud 控制台预览针对您的网站应用的通用建议,请按以下步骤操作:
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击要预览推荐的应用的名称。
在导航菜单中,点击 Preview。
点击 URI 字段。系统会显示来自您网站的网址列表。
点击您要针对其进行推荐的网页的网址。或者,在网址字段中输入您网站的网址。
点击获取推荐。系统会显示推荐网页的网址列表。
点击某个网址即可查看网页。
REST
如需使用此 API 为包含网站数据的应用获取通用建议,请使用 servingConfigs.recommend
方法:
找到您的引擎 ID。如果您已经有引擎 ID,请跳至第 2 步。
在 Google Cloud 控制台中,前往 Agent Builder 页面。
点击该应用的名称。
从 Google Cloud 控制台的网址中获取引擎 ID。它是
engines/
和/data
之间的文本。例如,如果网址包含gen-app-builder/engines/demo_1234567890123/data/records
则引擎 ID 为
demo_1234567890123
。
查找数据存储区 ID。如果您已有数据存储区 ID,请跳至下一步。
在 Google Cloud 控制台中,前往 Agent Builder 页面,然后在导航菜单中点击数据存储区。
点击您的数据存储区的名称。
在数据存储区的数据页面上,获取数据存储区 ID。
通过轮询
GetEngine
,确保您的引擎已准备好进行预览 方法,直到返回"servingState":"ACTIVE"
。此时,引擎会 可以进行预览了。curl -X GET \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/ENGINE_ID
- PROJECT_ID:您的项目的 ID。
- ENGINE_ID:引擎的 ID。
获取推荐内容。
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ -d '{ "userEvent": { "eventType":"view-item", "userPseudoId":"USER_PSEUDO_ID", "documents":[{"uri":"WEBSITE_URL"}]}}' \ "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/dataStores/DATA_STORE_ID/servingConfigs/SERVING_CONFIG_ID:recommend"
- PROJECT_ID:您的项目的 ID。
- DATA_STORE_ID:数据存储区的 ID。
- WEBSITE_URL:您要预览推荐内容的网站的网址。
- USER_PSEUDO_ID:用户的假名化标识符。您可以为此字段使用 HTTP Cookie,该 Cookie 可唯一标识单个设备上的访问者。请勿将此字段设置为相同的标识符 - 这会将他们的事件记录合并在一起,从而降低 模型质量。请勿包含个人身份信息 (PII) 。
- SERVING_CONFIG_ID:您的广告投放配置的 ID。您的广告投放配置 ID 与引擎 ID 相同,因此请在此处使用引擎 ID。
C#
如需了解详情,请参阅 Vertex AI Agent Builder C# API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Go
如需了解详情,请参阅 Vertex AI Agent Builder Go API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Java
如需了解详情,请参阅 Vertex AI Agent Builder Java API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Node.js
如需了解详情,请参阅 Vertex AI Agent Builder Node.js API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
PHP
有关详情,请参阅 Vertex AI Agent Builder PHP API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Python
有关详情,请参阅 Vertex AI Agent Builder Python API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Ruby
如需了解详情,请参阅 Vertex AI Agent Builder Ruby API 参考文档。
如需向 Vertex AI Agent Builder 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。