Daten aus einem Datenspeicher löschen

Auf dieser Seite wird beschrieben, wie Sie alle Daten in einem strukturierten oder unstrukturierten Datenspeicher löschen.

Sie müssen die Daten in einem strukturierten, unstrukturierten oder medizinischen Datenspeicher löschen, bevor Sie den Datenspeicher löschen können.

Sie können die Daten in einem Datenspeicher auch löschen, wenn Sie den Inhalt des Datenspeichers vollständig löschen möchten, bevor Sie neue Daten importieren. Wenn Sie einen Datenspeicher leeren, werden nur die Daten im Datenspeicher gelöscht. Ihre App, Ihr Schema und Ihre Konfigurationen bleiben intakt.

Website-Datenspeicher

Das Löschen ist für Website-Datenspeicher nicht möglich. Sie können Websites nach Bedarf aus Website-Datenspeichern entfernen. Dies ist jedoch nicht erforderlich, bevor Sie den Datenspeicher löschen.

Daten dauerhaft löschen

So löschen Sie Daten aus einem Datenspeicher:

Console

So löschen Sie mit der Google Cloud Console die Daten aus einem Verzweigungsknoten eines strukturierten, unstrukturierten oder Healthcare-Datenspeichers:

  1. Rufen Sie in der Google Cloud Console die Seite Agent Builder auf.

    Zum Agent Builder

  2. Klicken Sie im Navigationsmenü auf Datenspeicher.

  3. Klicken Sie in der Spalte Name auf den Datenspeicher, den Sie löschen möchten.

  4. Klicken Sie auf dem Tab Dokumente auf Daten löschen.

  5. Lesen Sie die Warnung im Dialogfeld Datenbereinigung bestätigen. Wenn Sie fortfahren möchten, geben Sie den Namen des Datenspeichers ein und klicken Sie dann auf Bestätigen. Das Löschen von Daten ist ein lang andauernder Vorgang. Weitere Informationen finden Sie unter Vorgänge mit langer Ausführungszeit überwachen.

  6. Klicken Sie auf den Tab Aktivität, um den Fortschritt des Löschvorgangs zu verfolgen.

REST

So löschen Sie die Daten über die Befehlszeile aus einem Verzweigungspunkt eines strukturierten oder unstrukturierten Datenspeichers:

  1. Suchen Sie die Datenspeicher-ID. Wenn Sie die Datenspeicher-ID bereits haben, fahren Sie mit dem nächsten Schritt fort.

    1. Rufen Sie in der Google Cloud Console die Seite Agent Builder auf und klicken Sie im Navigationsmenü auf Datenspeicher.

      Zur Seite „Datenspeicher“

    2. Klicken Sie auf den Namen des Datenspeichers.

    3. Rufen Sie auf der Datenseite Ihres Datenspeichers die Datenspeicher-ID ab.

  2. Rufen Sie die Methode documents.purge auf.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:purge" \
    -d '{
      "filter": "*",
      "force": FORCE
    }'
    
    • PROJECT_ID: Google Cloud-Projekt.
    • DATA_STORE_ID: Die ID des Vertex AI Search-Datenspeichers.
    • FORCE: ein boolescher Wert, der angibt, ob Daten aus dem Verzweigungspunkt des Datenspeichers gelöscht werden sollen.
      • Wenn true, werden alle Daten aus dem Branch gelöscht.
      • Wenn false, werden keine Daten gelöscht und eine Liste der Dokumente im Branch zurückgegeben.
      • Wenn force weggelassen wird, ist der Standardwert false.
  3. Optional: Notieren Sie sich den von der documents.purge-Methode zurückgegebenen name-Wert und folgen Sie der Anleitung unter Details zu einem Vorgang mit langer Ausführungszeit abrufen, um zu sehen, wann der Löschvorgang abgeschlossen ist.

C#

Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Agent Builder C# API.

Richten Sie zur Authentifizierung bei Vertex AI Agent Builder Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

using Google.Cloud.DiscoveryEngine.V1;
using Google.LongRunning;

public sealed partial class GeneratedDocumentServiceClientSnippets
{
    /// <summary>Snippet for PurgeDocuments</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void PurgeDocumentsRequestObject()
    {
        // Create client
        DocumentServiceClient documentServiceClient = DocumentServiceClient.Create();
        // Initialize request argument(s)
        PurgeDocumentsRequest request = new PurgeDocumentsRequest
        {
            ParentAsBranchName = BranchName.FromProjectLocationDataStoreBranch("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]"),
            Filter = "",
            Force = false,
            GcsSource = new GcsSource(),
            ErrorConfig = new PurgeErrorConfig(),
        };
        // Make the request
        Operation<PurgeDocumentsResponse, PurgeDocumentsMetadata> response = documentServiceClient.PurgeDocuments(request);

        // Poll until the returned long-running operation is complete
        Operation<PurgeDocumentsResponse, PurgeDocumentsMetadata> completedResponse = response.PollUntilCompleted();
        // Retrieve the operation result
        PurgeDocumentsResponse result = completedResponse.Result;

        // Or get the name of the operation
        string operationName = response.Name;
        // This name can be stored, then the long-running operation retrieved later by name
        Operation<PurgeDocumentsResponse, PurgeDocumentsMetadata> retrievedResponse = documentServiceClient.PollOncePurgeDocuments(operationName);
        // Check if the retrieved long-running operation has completed
        if (retrievedResponse.IsCompleted)
        {
            // If it has completed, then access the result
            PurgeDocumentsResponse retrievedResult = retrievedResponse.Result;
        }
    }
}

Go

Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Agent Builder Go API.

Richten Sie zur Authentifizierung bei Vertex AI Agent Builder Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


package main

import (
	"context"

	discoveryengine "cloud.google.com/go/discoveryengine/apiv1"
	discoveryenginepb "cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb"
)

func main() {
	ctx := context.Background()
	// This snippet has been automatically generated and should be regarded as a code template only.
	// It will require modifications to work:
	// - It may require correct/in-range values for request initialization.
	// - It may require specifying regional endpoints when creating the service client as shown in:
	//   https://pkg.go.dev/cloud.google.com/go#hdr-Client_Options
	c, err := discoveryengine.NewDocumentClient(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	defer c.Close()

	req := &discoveryenginepb.PurgeDocumentsRequest{
		// TODO: Fill request struct fields.
		// See https://pkg.go.dev/cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb#PurgeDocumentsRequest.
	}
	op, err := c.PurgeDocuments(ctx, req)
	if err != nil {
		// TODO: Handle error.
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	// TODO: Use resp.
	_ = resp
}

Java

Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Agent Builder Java API.

Richten Sie zur Authentifizierung bei Vertex AI Agent Builder Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import com.google.cloud.discoveryengine.v1.BranchName;
import com.google.cloud.discoveryengine.v1.DocumentServiceClient;
import com.google.cloud.discoveryengine.v1.PurgeDocumentsRequest;
import com.google.cloud.discoveryengine.v1.PurgeDocumentsResponse;
import com.google.cloud.discoveryengine.v1.PurgeErrorConfig;

public class SyncPurgeDocuments {

  public static void main(String[] args) throws Exception {
    syncPurgeDocuments();
  }

  public static void syncPurgeDocuments() throws Exception {
    // This snippet has been automatically generated and should be regarded as a code template only.
    // It will require modifications to work:
    // - It may require correct/in-range values for request initialization.
    // - It may require specifying regional endpoints when creating the service client as shown in
    // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
    try (DocumentServiceClient documentServiceClient = DocumentServiceClient.create()) {
      PurgeDocumentsRequest request =
          PurgeDocumentsRequest.newBuilder()
              .setParent(
                  BranchName.ofProjectLocationDataStoreBranchName(
                          "[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]")
                      .toString())
              .setFilter("filter-1274492040")
              .setErrorConfig(PurgeErrorConfig.newBuilder().build())
              .setForce(true)
              .build();
      PurgeDocumentsResponse response = documentServiceClient.purgeDocumentsAsync(request).get();
    }
  }
}

Node.js

Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Agent Builder Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Agent Builder Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * This snippet has been automatically generated and should be regarded as a code template only.
 * It will require modifications to work.
 * It may require correct/in-range values for request initialization.
 * TODO(developer): Uncomment these variables before running the sample.
 */
/**
 *  Cloud Storage location for the input content.
 *  Supported `data_schema`:
 *  * `document_id`: One valid
 *  Document.id google.cloud.discoveryengine.v1.Document.id  per line.
 */
// const gcsSource = {}
/**
 *  Inline source for the input content for purge.
 */
// const inlineSource = {}
/**
 *  Required. The parent resource name, such as
 *  `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/branches/{branch}`.
 */
// const parent = 'abc123'
/**
 *  Required. Filter matching documents to purge. Only currently supported
 *  value is
 *  `*` (all items).
 */
// const filter = 'abc123'
/**
 *  The desired location of errors incurred during the purge.
 */
// const errorConfig = {}
/**
 *  Actually performs the purge. If `force` is set to false, return the
 *  expected purge count without deleting any documents.
 */
// const force = true

// Imports the Discoveryengine library
const {DocumentServiceClient} = require('@google-cloud/discoveryengine').v1;

// Instantiates a client
const discoveryengineClient = new DocumentServiceClient();

async function callPurgeDocuments() {
  // Construct request
  const request = {
    parent,
    filter,
  };

  // Run request
  const [operation] = await discoveryengineClient.purgeDocuments(request);
  const [response] = await operation.promise();
  console.log(response);
}

callPurgeDocuments();

Python

Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Agent Builder Python API.

Richten Sie zur Authentifizierung bei Vertex AI Agent Builder Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"            # Values: "global", "us", "eu"
# data_store_id = "YOUR_DATA_STORE_ID"


def purge_documents_sample(
    project_id: str, location: str, data_store_id: str
) -> discoveryengine.PurgeDocumentsMetadata:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DocumentServiceClient(client_options=client_options)

    operation = client.purge_documents(
        request=discoveryengine.PurgeDocumentsRequest(
            # The full resource name of the search engine branch.
            # e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
            parent=client.branch_path(
                project=project_id,
                location=location,
                data_store=data_store_id,
                branch="default_branch",
            ),
            filter="*",
            # If force is set to `False`, return the expected purge count without deleting any documents.
            force=True,
        )
    )

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.PurgeDocumentsMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return metadata

Ruby

Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Agent Builder Ruby API.

Richten Sie zur Authentifizierung bei Vertex AI Agent Builder Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

require "google/cloud/discovery_engine/v1"

##
# Snippet for the purge_documents call in the DocumentService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1::DocumentService::Client#purge_documents.
#
def purge_documents
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1::DocumentService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1::PurgeDocumentsRequest.new

  # Call the purge_documents method.
  result = client.purge_documents request

  # The returned object is of type Gapic::Operation. You can use it to
  # check the status of an operation, cancel it, or wait for results.
  # Here is how to wait for a response.
  result.wait_until_done! timeout: 60
  if result.response?
    p result.response
  else
    puts "No response received."
  end
end