Crea un datastore di ricerca

Per creare un datastore e importare i dati per la ricerca, vai alla sezione relativa al che intendi utilizzare:

Per sincronizzare i dati da un'origine dati di terze parti, consulta: Collega un'origine dati di terze parti.

Limitazioni

Se disponi dei criteri dell'organizzazione CMEK, devi Creare nuovi datastore utilizzando l'API, non la console Google Cloud. Creazione di nuovi elementi in corso... i datastore utilizzando La console Google Cloud ha esito negativo se hai abilitato i criteri dell'organizzazione CMEK. Per Per saperne di più sul supporto CMEK per Vertex AI Search, consulta Chiavi di crittografia gestite dal cliente.

Creare un datastore utilizzando i contenuti del sito web

Utilizza la seguente procedura per creare un datastore e indicizzare i siti web.

Per utilizzare un data store del sito web dopo averlo creato, devi collegarlo a un'app in cui sono attive le funzionalità Enterprise. Puoi attivare la versione Enterprise per un'app al momento della sua creazione. Questa operazione comporta costi aggiuntivi. Consulta Creare un'app di ricerca e Informazioni sulle funzionalità avanzate.

Console

Per utilizzare la console Google Cloud per creare un datastore e indicizzare i siti web, segui questi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Nel menu di navigazione, fai clic su Datastore.

  3. Fai clic su Crea datastore.

  4. Nella pagina Origine, seleziona Contenuti del sito web.

  5. Scegli se attivare l'indicizzazione avanzata dei siti web per questo datastore. Questa opzione non può essere attivata o disattivata in un secondo momento.

    L'indicizzazione avanzata dei siti web offre funzionalità aggiuntive, come la ricerca riassunti, ricerche con follow-up e risposte estrattive. Avanzato l'indicizzazione dei siti web comporta costi aggiuntivi e richiede la verifica del dominio proprietà per qualsiasi sito web che indicizzi. Per ulteriori informazioni, consulta la sezione Indicizzazione avanzata dei siti web e Prezzi.

  6. Nel campo Siti da includere, inserisci i pattern URL corrispondenti ai siti web che vuoi includere nel tuo data store. Includi un URL pattern per riga, senza separatori di virgola. Ad esempio: www.example.com/docs/*

  7. (Facoltativo) Nel campo Siti da escludere, inserisci i pattern di URL che vuoi escludere dal tuo datastore.

    Per conoscere il numero di pattern URL che puoi includere o escludere, consulta Dati del sito web.

  8. Fai clic su Continua.

  9. Seleziona una posizione per il tuo datastore. Per selezionare una località, l'indicizzazione avanzata dei siti web deve essere attivata.

  10. Inserisci un nome per il datastore.

  11. Fai clic su Crea. Vertex AI Search crea il tuo datastore e lo visualizza nella pagina Datastore.

  12. Per visualizzare le informazioni sul datastore, fai clic sul nome del datastore nella colonna Nome. Viene visualizzata la pagina del datastore.

    • Se hai attivato l'indicizzazione avanzata dei siti web, viene visualizzato un avviso che ti chiede di verificare i domini nel tuo data store.
    • Se hai un disavanzo di quota (il numero di pagine dei siti web che hai specificato supera la quota "Numero di documenti per progetto" per il tuo progetto), viene visualizzato un avviso aggiuntivo che ti chiede di eseguire l'upgrade della quota.
  13. Per verificare i domini per i pattern URL nel datastore, segui le istruzioni nella pagina Verifica i domini dei siti web.

  14. Per eseguire l'upgrade della quota, segui questi passaggi:

    1. Fai clic su Esegui l'upgrade della quota. Viene visualizzata la pagina IAM e amministrazione della console Google Cloud.
    2. Segui le istruzioni riportate in Richiedere una quota superiore nella documentazione di Google Cloud. La quota da aumentare è Numero di documenti nel servizio API Discovery Engine.
    3. Dopo aver inviato la richiesta di un limite di quota più elevato, torna alla pagina Agent Builder e fai clic su Datastore nel menu di navigazione.
    4. Fai clic sul nome del datastore nella colonna Nome. La colonna Stato indica che l'indicizzazione è in corso per i siti web che hanno superato la quota. Quando la colonna Stato per un URL mostra Indicizzato, le funzionalità di indicizzazione avanzata del sito web sono disponibili per quell'URL o pattern URL.

    Per ulteriori informazioni, consulta la sezione Quota per l'indicizzazione delle pagine web nella pagina "Quote e limiti".

Python

Per ulteriori informazioni, consulta API Python di Vertex AI Agent Builder documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa siti web

from google.api_core.client_options import ClientOptions

from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"
# NOTE: Do not include http or https protocol in the URI pattern
# uri_pattern = "cloud.google.com/generative-ai-app-builder/docs/*"

#  For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.SiteSearchEngineServiceClient(
    client_options=client_options
)

# The full resource name of the data store
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}
site_search_engine = client.site_search_engine_path(
    project=project_id, location=location, data_store=data_store_id
)

# Target Site to index
target_site = discoveryengine.TargetSite(
    provided_uri_pattern=uri_pattern,
    # Options: INCLUDE, EXCLUDE
    type_=discoveryengine.TargetSite.Type.INCLUDE,
    exact_match=False,
)

# Make the request
operation = client.create_target_site(
    parent=site_search_engine,
    target_site=target_site,
)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.CreateTargetSiteMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Passaggi successivi

  • Per collegare il datastore del tuo sito web a un'app, crea un'app con le funzionalità di Enterprise attivate e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo che l'app e il datastore sono per l'impostazione, consulta Visualizza i risultati di ricerca.

Importa da BigQuery

Puoi creare data store dalle tabelle BigQuery in due modi:

  • Importazione una tantum: importi i dati da una tabella BigQuery in un un datastore. I dati nell'archivio dati non cambiano, a meno che non aggiorni manualmente i dati.

  • Importazione periodica: importi i dati da uno o più BigQuery tabelle e una frequenza di sincronizzazione che determina la frequenza vengono aggiornati con i dati più recenti di BigQuery del set di dati.

La tabella seguente mette a confronto i due modi in cui puoi importare BigQuery nei datastore di Vertex AI Search.

Importazione una tantum Importazione periodica
Generalmente disponibile (GA). Anteprima pubblica.
I dati devono essere aggiornati manualmente. I dati vengono aggiornati automaticamente ogni 1, 3 o 5 giorni. I dati non possono essere aggiornati manualmente.
Vertex AI Search crea un singolo datastore da table in BigQuery. Vertex AI Search crea un connettore di dati per un set di dati BigQuery e un data store (chiamato data store di entità) per ogni tabella specificata. Per ogni dato le tabelle devono avere lo stesso tipo di dati (ad esempio, strutturati) e di essere nello stesso set di dati BigQuery.
I dati di più tabelle possono essere combinati prima in un datastore importare dati da una tabella e poi più dati da un'altra origine o Tabella BigQuery. Poiché l'importazione manuale dei dati non è supportata, i dati in un data store delle entità possono provenire solo da una tabella BigQuery.
Il controllo dell'accesso all'origine dati è supportato. Il controllo dell'accesso all'origine dati non è supportato. I dati importati possono contenere controlli di accesso, ma questi controlli non verranno rispettati.
Puoi creare un data store utilizzando la console Google Cloud o l'API. Devi utilizzare la console per creare connettori dati e le relative entità e nei datastore.
conforme a CMEK. Non conforme a CMEK.

Esegui una sola importazione da BigQuery

Per importare i dati da una tabella BigQuery, segui questi passaggi per creare un data store e importare i dati utilizzando la console Google Cloud o l'API.

Prima di importare i dati, controlla Prepara i dati per l'importazione.

Console

Per utilizzare la console Google Cloud per importare i dati da BigQuery, segui questi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Vai alla pagina Datastore.

  3. Fai clic su Nuovo datastore.

  4. Nella pagina Origine, seleziona BigQuery.

  5. Seleziona il tipo di dati che stai importando.

  6. Fai clic su Una volta.

  7. Nel campo Percorso BigQuery, fai clic su Sfoglia, seleziona una tabella che hai preparato per l'importazione e poi fai clic su Seleziona. In alternativa, inserisci la posizione della tabella direttamente nel campo Percorso BigQuery.

  8. Fai clic su Continua.

  9. Se effettui un'importazione una tantum di dati strutturati:

    1. Mappa i campi alle proprietà chiave.

    2. Se nello schema mancano campi importanti, utilizza Aggiungi nuovo campo per aggiungerli.

      Per ulteriori informazioni, consulta Informazioni su rilevamento automatico e modifica.

    3. Fai clic su Continua.

  10. Scegli una regione per il tuo datastore.

  11. Inserisci un nome per il datastore.

  12. Fai clic su Crea.

  13. Per controllare lo stato dell'importazione, vai alla pagina Datastore e fai clic sul nome del datastore per visualizzarne i dettagli nella pagina Dati. Quando la colonna dello stato nella scheda Attività cambia da In corso su Importazione completata, l'importazione è completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere diverse minuti o diverse ore.

REST

Per utilizzare la riga di comando per creare un data store e importare i dati da BigQuery, segui questi passaggi.

  1. Creare un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DATA_STORE_DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"]
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Google Cloud.
    • DATA_STORE_ID: l'ID del datastore di Vertex AI Search che vuoi creare. Questo ID può contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DATA_STORE_DISPLAY_NAME: il nome visualizzato di Vertex AI Cerca nel datastore che vuoi creare.

    (Facoltativo) Se carichi dati non strutturati e vuoi configurare l'analisi del documento o attivare il suddivisione dei documenti per RAG, specifica l'oggetto documentProcessingConfig e includilo nella richiesta di creazione del datastore. La configurazione di un Il parser OCR per i PDF è consigliato se stai importando PDF scansionati. Per come per configurare le opzioni di analisi o chunking, consulta Analisi e chunking documenti.

  2. Importa i dati da BigQuery.

    Se hai definito uno schema, assicurati che i dati siano conformi a questo schema.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:import" \
    -d '{
      "bigquerySource": {
        "projectId": "PROJECT_ID",
        "datasetId":"DATASET_ID",
        "tableId": "TABLE_ID",
        "dataSchema": "DATA_SCHEMA",
        "aclEnabled": "BOOLEAN"
      },
      "reconciliationMode": "RECONCILIATION_MODE",
      "autoGenerateIds": "AUTO_GENERATE_IDS",
      "idField": "ID_FIELD",
      "errorConfig": {
        "gcsPrefix": "ERROR_DIRECTORY"
      }
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Google Cloud.
    • DATA_STORE_ID: l'ID dello spazio dati di Vertex AI Search.
    • DATASET_ID: l'ID del set di dati BigQuery.
    • TABLE_ID: l'ID della tabella BigQuery.
      • Se la tabella BigQuery non è in PROJECT_ID, devi concedere all'account di servizio service-<project number>@gcp-sa-discoveryengine.iam.gserviceaccount.com "Visualizzatore dati BigQuery" l'autorizzazione per Tabella BigQuery. Ad esempio, se importi una tabella BigQuery dal progetto di origine "123" al progetto di destinazione "456", concedi service-456@gcp-sa-discoveryengine.iam.gserviceaccount.com i permessi per la tabella BigQuery nel progetto "123".
    • DATA_SCHEMA: facoltativo. I valori sono document e custom. Il valore predefinito è document.
      • document: la tabella BigQuery che utilizzi deve essere conforme allo standard BigQuery schema fornito Prepara i dati per l'importazione. Puoi definire tu stesso l'ID di ogni documento, durante il wrapping di tutti i dati nella stringa jsonData.
      • custom: qualsiasi schema di tabella BigQuery è accettato e Vertex AI Search genera automaticamente gli ID per ogni documento importato.
    • ERROR_DIRECTORY: facoltativo. Una directory Cloud Storage per informazioni sugli errori di importazione, ad esempio gs://<your-gcs-bucket>/directory/import_errors. Google consiglia lasciando questo campo vuoto per consentire a Vertex AI Search automaticamente una directory temporanea.
    • RECONCILIATION_MODE: facoltativo. I valori sono FULL e INCREMENTAL. Il valore predefinito è INCREMENTAL. Specifica INCREMENTAL causa un aggiornamento incrementale dei dati da BigQuery al datastore. Viene eseguita un'operazione di upsert, che aggiunge nuovi documenti e sostituisce quelli esistenti con documenti aggiornati con lo stesso ID. Se specifichi FULL, viene generato un rebase completo documenti nel datastore. In altre parole, i documenti nuovi e aggiornati vengono aggiunti al tuo data store, mentre quelli non presenti in BigQuery vengono rimossi. La La modalità FULL è utile se vuoi eliminare automaticamente i documenti che non ti servono più.
    • AUTO_GENERATE_IDS: facoltativo. Specifica se generare automaticamente gli ID documento. Se impostato su true, gli ID documento vengono generati in base a un hash del payload. Tieni presente che gli ID documento generati potrebbero non rimanere coerenti in più importazioni. Se gli ID vengono generati automaticamente in più importazioni, Google ha consiglia di impostare reconciliationMode su FULL per mantenere gli ID dei documenti coerenti.

      Specifica autoGenerateIds solo quando bigquerySource.dataSchema è impostato su custom. In caso contrario, viene restituito un errore INVALID_ARGUMENT restituito. Se non specifichi autoGenerateIds o non lo imposti su false, devi specificare idField. In caso contrario, l'importazione dei documenti non andrà a buon fine.

    • ID_FIELD: facoltativo. Specifica quali campi sono gli ID documento. Per i file di origine BigQuery, idField indica il nome della colonna nella tabella BigQuery che contiene gli ID documento.

      Specifica idField solo se: (1) bigquerySource.dataSchema è impostato su custom e (2) auto_generate_ids è impostato su false o non è specificato. In caso contrario, viene restituito un errore INVALID_ARGUMENT.

      Il valore del nome della colonna BigQuery deve essere di tipo stringa, deve essere compreso tra 1 e 63 caratteri e deve essere conforme a RFC-1034. In caso contrario, l'importazione dei documenti non riesce.

C#

Per ulteriori informazioni, consulta API C# di Vertex AI Agent Builder documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

using Google.Cloud.DiscoveryEngine.V1;
using Google.LongRunning;

public sealed partial class GeneratedDataStoreServiceClientSnippets
{
    /// <summary>Snippet for CreateDataStore</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void CreateDataStoreRequestObject()
    {
        // Create client
        DataStoreServiceClient dataStoreServiceClient = DataStoreServiceClient.Create();
        // Initialize request argument(s)
        CreateDataStoreRequest request = new CreateDataStoreRequest
        {
            ParentAsCollectionName = CollectionName.FromProjectLocationCollection("[PROJECT]", "[LOCATION]", "[COLLECTION]"),
            DataStore = new DataStore(),
            DataStoreId = "",
            CreateAdvancedSiteSearch = false,
            SkipDefaultSchemaCreation = false,
        };
        // Make the request
        Operation<DataStore, CreateDataStoreMetadata> response = dataStoreServiceClient.CreateDataStore(request);

        // Poll until the returned long-running operation is complete
        Operation<DataStore, CreateDataStoreMetadata> completedResponse = response.PollUntilCompleted();
        // Retrieve the operation result
        DataStore result = completedResponse.Result;

        // Or get the name of the operation
        string operationName = response.Name;
        // This name can be stored, then the long-running operation retrieved later by name
        Operation<DataStore, CreateDataStoreMetadata> retrievedResponse = dataStoreServiceClient.PollOnceCreateDataStore(operationName);
        // Check if the retrieved long-running operation has completed
        if (retrievedResponse.IsCompleted)
        {
            // If it has completed, then access the result
            DataStore retrievedResult = retrievedResponse.Result;
        }
    }
}

Importa documenti

using Google.Cloud.DiscoveryEngine.V1;
using Google.LongRunning;
using Google.Protobuf.WellKnownTypes;

public sealed partial class GeneratedDocumentServiceClientSnippets
{
    /// <summary>Snippet for ImportDocuments</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void ImportDocumentsRequestObject()
    {
        // Create client
        DocumentServiceClient documentServiceClient = DocumentServiceClient.Create();
        // Initialize request argument(s)
        ImportDocumentsRequest request = new ImportDocumentsRequest
        {
            ParentAsBranchName = BranchName.FromProjectLocationDataStoreBranch("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]"),
            InlineSource = new ImportDocumentsRequest.Types.InlineSource(),
            ErrorConfig = new ImportErrorConfig(),
            ReconciliationMode = ImportDocumentsRequest.Types.ReconciliationMode.Unspecified,
            UpdateMask = new FieldMask(),
            AutoGenerateIds = false,
            IdField = "",
        };
        // Make the request
        Operation<ImportDocumentsResponse, ImportDocumentsMetadata> response = documentServiceClient.ImportDocuments(request);

        // Poll until the returned long-running operation is complete
        Operation<ImportDocumentsResponse, ImportDocumentsMetadata> completedResponse = response.PollUntilCompleted();
        // Retrieve the operation result
        ImportDocumentsResponse result = completedResponse.Result;

        // Or get the name of the operation
        string operationName = response.Name;
        // This name can be stored, then the long-running operation retrieved later by name
        Operation<ImportDocumentsResponse, ImportDocumentsMetadata> retrievedResponse = documentServiceClient.PollOnceImportDocuments(operationName);
        // Check if the retrieved long-running operation has completed
        if (retrievedResponse.IsCompleted)
        {
            // If it has completed, then access the result
            ImportDocumentsResponse retrievedResult = retrievedResponse.Result;
        }
    }
}

Go

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Go Vertex AI Agent Builder.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


package main

import (
	"context"

	discoveryengine "cloud.google.com/go/discoveryengine/apiv1"
	discoveryenginepb "cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb"
)

func main() {
	ctx := context.Background()
	// This snippet has been automatically generated and should be regarded as a code template only.
	// It will require modifications to work:
	// - It may require correct/in-range values for request initialization.
	// - It may require specifying regional endpoints when creating the service client as shown in:
	//   https://pkg.go.dev/cloud.google.com/go#hdr-Client_Options
	c, err := discoveryengine.NewDataStoreClient(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	defer c.Close()

	req := &discoveryenginepb.CreateDataStoreRequest{
		// TODO: Fill request struct fields.
		// See https://pkg.go.dev/cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb#CreateDataStoreRequest.
	}
	op, err := c.CreateDataStore(ctx, req)
	if err != nil {
		// TODO: Handle error.
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	// TODO: Use resp.
	_ = resp
}

Importa documenti


package main

import (
	"context"

	discoveryengine "cloud.google.com/go/discoveryengine/apiv1"
	discoveryenginepb "cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb"
)

func main() {
	ctx := context.Background()
	// This snippet has been automatically generated and should be regarded as a code template only.
	// It will require modifications to work:
	// - It may require correct/in-range values for request initialization.
	// - It may require specifying regional endpoints when creating the service client as shown in:
	//   https://pkg.go.dev/cloud.google.com/go#hdr-Client_Options
	c, err := discoveryengine.NewDocumentClient(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	defer c.Close()

	req := &discoveryenginepb.ImportDocumentsRequest{
		// TODO: Fill request struct fields.
		// See https://pkg.go.dev/cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb#ImportDocumentsRequest.
	}
	op, err := c.ImportDocuments(ctx, req)
	if err != nil {
		// TODO: Handle error.
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	// TODO: Use resp.
	_ = resp
}

Java

Per ulteriori informazioni, consulta API Java di Vertex AI Agent Builder documentazione di riferimento.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

import com.google.cloud.discoveryengine.v1.CollectionName;
import com.google.cloud.discoveryengine.v1.CreateDataStoreRequest;
import com.google.cloud.discoveryengine.v1.DataStore;
import com.google.cloud.discoveryengine.v1.DataStoreServiceClient;

public class SyncCreateDataStore {

  public static void main(String[] args) throws Exception {
    syncCreateDataStore();
  }

  public static void syncCreateDataStore() throws Exception {
    // This snippet has been automatically generated and should be regarded as a code template only.
    // It will require modifications to work:
    // - It may require correct/in-range values for request initialization.
    // - It may require specifying regional endpoints when creating the service client as shown in
    // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
    try (DataStoreServiceClient dataStoreServiceClient = DataStoreServiceClient.create()) {
      CreateDataStoreRequest request =
          CreateDataStoreRequest.newBuilder()
              .setParent(CollectionName.of("[PROJECT]", "[LOCATION]", "[COLLECTION]").toString())
              .setDataStore(DataStore.newBuilder().build())
              .setDataStoreId("dataStoreId929489618")
              .setCreateAdvancedSiteSearch(true)
              .setSkipDefaultSchemaCreation(true)
              .build();
      DataStore response = dataStoreServiceClient.createDataStoreAsync(request).get();
    }
  }
}

Importa documenti

import com.google.cloud.discoveryengine.v1.BranchName;
import com.google.cloud.discoveryengine.v1.DocumentServiceClient;
import com.google.cloud.discoveryengine.v1.ImportDocumentsRequest;
import com.google.cloud.discoveryengine.v1.ImportDocumentsResponse;
import com.google.cloud.discoveryengine.v1.ImportErrorConfig;
import com.google.protobuf.FieldMask;

public class SyncImportDocuments {

  public static void main(String[] args) throws Exception {
    syncImportDocuments();
  }

  public static void syncImportDocuments() throws Exception {
    // This snippet has been automatically generated and should be regarded as a code template only.
    // It will require modifications to work:
    // - It may require correct/in-range values for request initialization.
    // - It may require specifying regional endpoints when creating the service client as shown in
    // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
    try (DocumentServiceClient documentServiceClient = DocumentServiceClient.create()) {
      ImportDocumentsRequest request =
          ImportDocumentsRequest.newBuilder()
              .setParent(
                  BranchName.ofProjectLocationDataStoreBranchName(
                          "[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]")
                      .toString())
              .setErrorConfig(ImportErrorConfig.newBuilder().build())
              .setUpdateMask(FieldMask.newBuilder().build())
              .setAutoGenerateIds(true)
              .setIdField("idField1629396127")
              .build();
      ImportDocumentsResponse response = documentServiceClient.importDocumentsAsync(request).get();
    }
  }
}

Node.js

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js Vertex AI Agent Builder.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

/**
 * This snippet has been automatically generated and should be regarded as a code template only.
 * It will require modifications to work.
 * It may require correct/in-range values for request initialization.
 * TODO(developer): Uncomment these variables before running the sample.
 */
/**
 *  Required. The parent resource name, such as
 *  `projects/{project}/locations/{location}/collections/{collection}`.
 */
// const parent = 'abc123'
/**
 *  Required. The DataStore google.cloud.discoveryengine.v1.DataStore  to
 *  create.
 */
// const dataStore = {}
/**
 *  Required. The ID to use for the
 *  DataStore google.cloud.discoveryengine.v1.DataStore, which will become
 *  the final component of the
 *  DataStore google.cloud.discoveryengine.v1.DataStore's resource name.
 *  This field must conform to RFC-1034 (https://tools.ietf.org/html/rfc1034)
 *  standard with a length limit of 63 characters. Otherwise, an
 *  INVALID_ARGUMENT error is returned.
 */
// const dataStoreId = 'abc123'
/**
 *  A boolean flag indicating whether user want to directly create an advanced
 *  data store for site search.
 *  If the data store is not configured as site
 *  search (GENERIC vertical and PUBLIC_WEBSITE content_config), this flag will
 *  be ignored.
 */
// const createAdvancedSiteSearch = true
/**
 *  A boolean flag indicating whether to skip the default schema creation for
 *  the data store. Only enable this flag if you are certain that the default
 *  schema is incompatible with your use case.
 *  If set to true, you must manually create a schema for the data store before
 *  any documents can be ingested.
 *  This flag cannot be specified if `data_store.starting_schema` is specified.
 */
// const skipDefaultSchemaCreation = true

// Imports the Discoveryengine library
const {DataStoreServiceClient} = require('@google-cloud/discoveryengine').v1;

// Instantiates a client
const discoveryengineClient = new DataStoreServiceClient();

async function callCreateDataStore() {
  // Construct request
  const request = {
    parent,
    dataStore,
    dataStoreId,
  };

  // Run request
  const [operation] = await discoveryengineClient.createDataStore(request);
  const [response] = await operation.promise();
  console.log(response);
}

callCreateDataStore();

Importa documenti

/**
 * This snippet has been automatically generated and should be regarded as a code template only.
 * It will require modifications to work.
 * It may require correct/in-range values for request initialization.
 * TODO(developer): Uncomment these variables before running the sample.
 */
/**
 *  The Inline source for the input content for documents.
 */
// const inlineSource = {}
/**
 *  Cloud Storage location for the input content.
 */
// const gcsSource = {}
/**
 *  BigQuery input source.
 */
// const bigquerySource = {}
/**
 *  FhirStore input source.
 */
// const fhirStoreSource = {}
/**
 *  Spanner input source.
 */
// const spannerSource = {}
/**
 *  Cloud SQL input source.
 */
// const cloudSqlSource = {}
/**
 *  Firestore input source.
 */
// const firestoreSource = {}
/**
 *  AlloyDB input source.
 */
// const alloyDbSource = {}
/**
 *  Cloud Bigtable input source.
 */
// const bigtableSource = {}
/**
 *  Required. The parent branch resource name, such as
 *  `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/branches/{branch}`.
 *  Requires create/update permission.
 */
// const parent = 'abc123'
/**
 *  The desired location of errors incurred during the Import.
 */
// const errorConfig = {}
/**
 *  The mode of reconciliation between existing documents and the documents to
 *  be imported. Defaults to
 *  ReconciliationMode.INCREMENTAL google.cloud.discoveryengine.v1.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL.
 */
// const reconciliationMode = {}
/**
 *  Indicates which fields in the provided imported documents to update. If
 *  not set, the default is to update all fields.
 */
// const updateMask = {}
/**
 *  Whether to automatically generate IDs for the documents if absent.
 *  If set to `true`,
 *  Document.id google.cloud.discoveryengine.v1.Document.id s are
 *  automatically generated based on the hash of the payload, where IDs may not
 *  be consistent during multiple imports. In which case
 *  ReconciliationMode.FULL google.cloud.discoveryengine.v1.ImportDocumentsRequest.ReconciliationMode.FULL 
 *  is highly recommended to avoid duplicate contents. If unset or set to
 *  `false`, Document.id google.cloud.discoveryengine.v1.Document.id s have
 *  to be specified using
 *  id_field google.cloud.discoveryengine.v1.ImportDocumentsRequest.id_field,
 *  otherwise, documents without IDs fail to be imported.
 *  Supported data sources:
 *  * GcsSource google.cloud.discoveryengine.v1.GcsSource.
 *  GcsSource.data_schema google.cloud.discoveryengine.v1.GcsSource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * BigQuerySource google.cloud.discoveryengine.v1.BigQuerySource.
 *  BigQuerySource.data_schema google.cloud.discoveryengine.v1.BigQuerySource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * SpannerSource google.cloud.discoveryengine.v1.SpannerSource.
 *  * CloudSqlSource google.cloud.discoveryengine.v1.CloudSqlSource.
 *  * FirestoreSource google.cloud.discoveryengine.v1.FirestoreSource.
 *  * BigtableSource google.cloud.discoveryengine.v1.BigtableSource.
 */
// const autoGenerateIds = true
/**
 *  The field indicates the ID field or column to be used as unique IDs of
 *  the documents.
 *  For GcsSource google.cloud.discoveryengine.v1.GcsSource  it is the key of
 *  the JSON field. For instance, `my_id` for JSON `{"my_id": "some_uuid"}`.
 *  For others, it may be the column name of the table where the unique ids are
 *  stored.
 *  The values of the JSON field or the table column are used as the
 *  Document.id google.cloud.discoveryengine.v1.Document.id s. The JSON field
 *  or the table column must be of string type, and the values must be set as
 *  valid strings conform to RFC-1034 (https://tools.ietf.org/html/rfc1034)
 *  with 1-63 characters. Otherwise, documents without valid IDs fail to be
 *  imported.
 *  Only set this field when
 *  auto_generate_ids google.cloud.discoveryengine.v1.ImportDocumentsRequest.auto_generate_ids 
 *  is unset or set as `false`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  If it is unset, a default value `_id` is used when importing from the
 *  allowed data sources.
 *  Supported data sources:
 *  * GcsSource google.cloud.discoveryengine.v1.GcsSource.
 *  GcsSource.data_schema google.cloud.discoveryengine.v1.GcsSource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * BigQuerySource google.cloud.discoveryengine.v1.BigQuerySource.
 *  BigQuerySource.data_schema google.cloud.discoveryengine.v1.BigQuerySource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * SpannerSource google.cloud.discoveryengine.v1.SpannerSource.
 *  * CloudSqlSource google.cloud.discoveryengine.v1.CloudSqlSource.
 *  * FirestoreSource google.cloud.discoveryengine.v1.FirestoreSource.
 *  * BigtableSource google.cloud.discoveryengine.v1.BigtableSource.
 */
// const idField = 'abc123'

// Imports the Discoveryengine library
const {DocumentServiceClient} = require('@google-cloud/discoveryengine').v1;

// Instantiates a client
const discoveryengineClient = new DocumentServiceClient();

async function callImportDocuments() {
  // Construct request
  const request = {
    parent,
  };

  // Run request
  const [operation] = await discoveryengineClient.importDocuments(request);
  const [response] = await operation.promise();
  console.log(response);
}

callImportDocuments();

Python

Per ulteriori informazioni, consulta API Python di Vertex AI Agent Builder documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa documenti


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"
# bigquery_dataset = "YOUR_BIGQUERY_DATASET"
# bigquery_table = "YOUR_BIGQUERY_TABLE"

#  For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.DocumentServiceClient(client_options=client_options)

# The full resource name of the search engine branch.
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
parent = client.branch_path(
    project=project_id,
    location=location,
    data_store=data_store_id,
    branch="default_branch",
)

request = discoveryengine.ImportDocumentsRequest(
    parent=parent,
    bigquery_source=discoveryengine.BigQuerySource(
        project_id=project_id,
        dataset_id=bigquery_dataset,
        table_id=bigquery_table,
        data_schema="custom",
    ),
    # Options: `FULL`, `INCREMENTAL`
    reconciliation_mode=discoveryengine.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL,
)

# Make the request
operation = client.import_documents(request=request)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.ImportDocumentsMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Ruby

Per ulteriori informazioni, consulta API Ruby di Vertex AI Agent Builder documentazione di riferimento.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

require "google/cloud/discovery_engine/v1"

##
# Snippet for the create_data_store call in the DataStoreService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1::DataStoreService::Client#create_data_store.
#
def create_data_store
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1::DataStoreService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1::CreateDataStoreRequest.new

  # Call the create_data_store method.
  result = client.create_data_store request

  # The returned object is of type Gapic::Operation. You can use it to
  # check the status of an operation, cancel it, or wait for results.
  # Here is how to wait for a response.
  result.wait_until_done! timeout: 60
  if result.response?
    p result.response
  else
    puts "No response received."
  end
end

Importa documenti

require "google/cloud/discovery_engine/v1"

##
# Snippet for the import_documents call in the DocumentService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1::DocumentService::Client#import_documents.
#
def import_documents
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1::DocumentService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1::ImportDocumentsRequest.new

  # Call the import_documents method.
  result = client.import_documents request

  # The returned object is of type Gapic::Operation. You can use it to
  # check the status of an operation, cancel it, or wait for results.
  # Here is how to wait for a response.
  result.wait_until_done! timeout: 60
  if result.response?
    p result.response
  else
    puts "No response received."
  end
end

Connettiti a BigQuery con sincronizzazione periodica

Prima di importare i dati, controlla Prepara i dati per l'importazione.

La procedura seguente descrive come creare un connettore dati che associ un set di dati BigQuery a un connettore dati Vertex AI Search e come specificare una tabella nel set di dati per ogni datastore che vuoi creare. I datastore che sono figli di connettori dati sono chiamati datastore entità.

I dati del set di dati vengono sincronizzati periodicamente con i datastore delle entità. Puoi specificare la sincronizzazione giornaliera, ogni tre giorni o ogni cinque giorni.

Console

Per utilizzare la console Google Cloud per creare un connettore che sincronizzi periodicamente i dati da un set di dati BigQuery a Vertex AI Search, segui questi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Nel menu di navigazione, fai clic su Datastore.

  3. Fai clic su Crea datastore.

  4. Nella pagina Origine, seleziona BigQuery.

  5. Seleziona il tipo di dati da importare.

  6. Fai clic su Periodico.

  7. Seleziona la Frequenza di sincronizzazione, ovvero la frequenza con cui vuoi che il connettore di ricerca Vertex AI si sincronizzi con il set di dati BigQuery. Puoi modificare la frequenza in un secondo momento.

  8. Nel campo Percorso set di dati BigQuery, fai clic su Sfoglia e seleziona il set di dati. che contiene le tabelle che hai preparato per importazione. In alternativa, inserisci la posizione della tabella direttamente nel campo Percorso BigQuery. Il formato del percorso è projectname.datasetname.

  9. Nel campo Tabelle da sincronizzare, fai clic su Sfoglia e seleziona una tabella. che contenga i dati da utilizzare per il datastore.

  10. Se nel set di dati sono presenti altre tabelle che vuoi utilizzare per i depositi di dati, fai clic su Aggiungi tabella e specifica anche queste tabelle.

  11. Fai clic su Continua.

  12. Scegli una regione per il datastore, inserisci un nome per il connettore dati e fai clic su Crea.

    A questo punto hai creato un connettore dati che sincronizzerà periodicamente i dati con il set di dati BigQuery. Hai creato una o più entità e nei datastore. Gli archivi dati hanno gli stessi nomi delle tabelle BigQuery.

  13. Per controllare lo stato dell'importazione, vai alla pagina Datastore e fai clic sul nome del connettore dati per visualizzarne i dettagli nella sezione Dati pagina > Scheda Attività di importazione dati. Quando la colonna dello stato nella La scheda Attività passa da In corso a Riuscito, la prima Importazione completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere diverse minuti o diverse ore.

Dopo aver configurato l'origine dati e importato i dati la prima volta, il datastore sincronizza i dati da tale sorgente con la frequenza selezionata durante la configurazione. La prima sincronizzazione avviene circa un'ora dopo la creazione del connettore dati. La sincronizzazione successiva avviene circa 24, 72 o 120 ore dopo.

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo che l'app e il datastore sono per l'impostazione, consulta Visualizza i risultati di ricerca.

Importa da Cloud Storage

Puoi creare datastore dalle tabelle Cloud Storage in due modi:

  • Importazione una tantum: importi i dati da una cartella o da un file Cloud Storage in un data store. I dati nell'archivio dati non cambiano, a meno che non li aggiorni manualmente.

  • Importazione periodica: importi i dati da una cartella Cloud Storage oppure e imposti una frequenza di sincronizzazione che determina la frequenza con cui i dati il datastore viene aggiornato con i dati più recenti in ogni località.

La tabella seguente mette a confronto i due modi in cui puoi importare i dati di Cloud Storage nei datastore di Vertex AI Search.

Importazione una tantum Importazione periodica
Generalmente disponibile (GA). Anteprima pubblica.
I dati devono essere aggiornati manualmente. I dati vengono aggiornati automaticamente ogni uno, tre o cinque giorni. I dati non possono essere aggiornati manualmente.
Vertex AI Search crea un singolo data store da una cartella o un file in Cloud Storage. Vertex AI Search crea un connettore di dati e lo associa a un datastore (chiamato datastore di entità) per il file o la cartella specificati. Ogni connettore di dati Cloud Storage può avere un singolo archivio dati delle entità.
I dati di più file, cartelle e bucket possono essere combinati in un unico un datastore importando prima i dati da una posizione di Cloud Storage quindi più dati da un'altra posizione. Poiché l'importazione manuale dei dati non è supportata, i dati in un insieme di dati di entità possono provenire solo da un file o da una cartella Cloud Storage.
Il controllo dell'accesso all'origine dati è supportato. Per ulteriori informazioni, consulta Controllo dell'accesso alle origini dati. Il controllo dell'accesso all'origine dati non è supportato. I dati importati possono contenere controlli di accesso, ma questi controlli non verranno rispettati.
Puoi creare un data store utilizzando la console Google Cloud o l'API. Devi utilizzare la console per creare connettori dati e le relative entità e nei datastore.
Conformi a CMEK. Non conforme a CMEK.

Importa una volta da Cloud Storage

Per importare dati da Cloud Storage, segui questi passaggi per creare: un datastore e importare i dati utilizzando la console Google Cloud o l'API.

Prima di importare i dati, consulta Preparare i dati per l'importazione.

Console

Per utilizzare la console per importare i dati da un bucket Cloud Storage, segui questi passaggi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Vai alla pagina Datastore.

  3. Fai clic su Nuovo datastore.

  4. Nella pagina Origine, seleziona Cloud Storage.

  5. Nella sezione Seleziona una cartella o un file da importare, seleziona Cartella o File.

  6. Fai clic su Sfoglia e scegli i dati che hai preparato per l'importazione, poi fai clic su Seleziona. In alternativa, inserisci la sede direttamente nel campo gs://.

  7. Seleziona il tipo di dati che vuoi importare.

  8. Fai clic su Continua.

  9. Se effettui un'importazione una tantum di dati strutturati:

    1. Mappa i campi alle proprietà chiave.

    2. Se nello schema mancano campi importanti, utilizza Aggiungi nuovo campo per aggiungerli.

      Per ulteriori informazioni, consulta Informazioni su rilevamento automatico e modifica.

    3. Fai clic su Continua.

  10. Scegli una regione per il tuo datastore.

  11. Inserisci un nome per il datastore.

  12. (Facoltativo) Se hai selezionato documenti non strutturati, puoi selezionare le opzioni di analisi e suddivisione per i documenti. Per confrontare i parser, consulta Analisi documenti. Per informazioni sul chunking, consulta Documenti Chunk per RAG.

    L'analizzatore sintattico OCR e l'analizzatore sintattico del layout possono comportare costi aggiuntivi. Vedi Documento prezzi delle funzionalità di IA.

    Per selezionare un parser, espandi Opzioni di elaborazione documenti e specifica le opzioni del parser che vuoi utilizzare.

  13. Fai clic su Crea.

  14. Per controllare lo stato dell'importazione, vai alla pagina Datastore e fai clic sul nome del datastore per visualizzarne i dettagli nella pagina Dati. Quando la colonna dello stato nella scheda Attività cambia da In corso su Importazione completata, l'importazione è completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere diverse minuti o diverse ore.

REST

Utilizzare la riga di comando per creare un datastore e importare i dati da Cloud Storage, segui questi passaggi.

  1. Crea un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DATA_STORE_DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"],
      "contentConfig": "CONTENT_REQUIRED",
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Google Cloud.
    • DATA_STORE_ID: l'ID del datastore di Vertex AI Search che vuoi creare. Questo ID può contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DATA_STORE_DISPLAY_NAME: il nome visualizzato di Vertex AI Cerca nel datastore che vuoi creare.

    (Facoltativo) Per configurare l'analisi dei documenti o attivare il documento per RAG, specifica documentProcessingConfig e includerlo nella richiesta di creazione del datastore. Ti consigliamo di configurare un analizzatore OCR per i PDF se importi PDF scansionati. Per informazioni su come configurare le opzioni di analisi o suddivisione in blocchi, vedi Eseguire l'analisi e suddividere i documenti in blocchi.

  2. Importa i dati da Cloud Storage.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:import" \
      -d '{
        "gcsSource": {
          "inputUris": ["INPUT_FILE_PATTERN_1", "INPUT_FILE_PATTERN_2"],
          "dataSchema": "DATA_SCHEMA",
        },
        "reconciliationMode": "RECONCILIATION_MODE",
        "autoGenerateIds": "AUTO_GENERATE_IDS",
        "idField": "ID_FIELD",
        "errorConfig": {
          "gcsPrefix": "ERROR_DIRECTORY"
        }
      }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Google Cloud.
    • DATA_STORE_ID: l'ID dello spazio dati di Vertex AI Search.
    • INPUT_FILE_PATTERN: un pattern di file in Cloud Storage contenente i tuoi documenti.

      Per i dati strutturati o non strutturati con metadati, Un esempio di pattern del file di input è gs://<your-gcs-bucket>/directory/object.jsone un esempio di il pattern che corrisponde a uno o più file è gs://<your-gcs-bucket>/directory/*.json.

      Per i documenti non strutturati, un esempio è gs://<your-gcs-bucket>/directory/*.pdf. Ogni file corrispondente in base al pattern diventa un documento.

      Se <your-gcs-bucket> non è al di sotto di PROJECT_ID, devi assegnare all'account di servizio service-<project number>@gcp-sa-discoveryengine.iam.gserviceaccount.com "Storage Visualizzatore oggetti" autorizzazioni per il bucket Cloud Storage. Per Ad esempio, se importi un bucket Cloud Storage progetto di origine "123" al progetto di destinazione "456", service-456@gcp-sa-discoveryengine.iam.gserviceaccount.com autorizzazioni per il bucket Cloud Storage nel progetto "123".

    • DATA_SCHEMA: facoltativo. I valori sono document, custom, csv e content. Il valore predefinito è document.

      • document: carica i dati non strutturati con i metadati per i documenti non strutturati. Ogni riga del file deve seguire uno dei seguenti formati. Puoi definire l'ID di ogni documento:

        • { "id": "<your-id>", "jsonData": "<JSON string>", "content": { "mimeType": "<application/pdf or text/html>", "uri": "gs://<your-gcs-bucket>/directory/filename.pdf" } }
        • { "id": "<your-id>", "structData": <JSON object>, "content": { "mimeType": "<application/pdf or text/html>", "uri": "gs://<your-gcs-bucket>/directory/filename.pdf" } }
      • custom: carica il file JSON per i documenti strutturati. I dati vengono sono organizzate in base a uno schema. Puoi specificare lo schema. altrimenti viene rilevata automaticamente. Puoi inserire la stringa JSON del documento in un formato coerente direttamente in ogni riga e Vertex AI Search genera automaticamente gli ID per ogni documento importato.

      • content: carica i documenti non strutturati (PDF, HTML, DOC, TXT, PPTX). L'ID di ogni documento viene generato automaticamente i primi 128 bit di SHA256(GCS_URI) codificati come stringa esadecimale. Puoi specificare più pattern di file di input, a condizione che i file corrispondenti non superino il limite di 100.000 file.

      • csv: includi una riga di intestazione nel file CSV, con ogni intestazione mappata a un campo del documento. Specifica il percorso del file CSV utilizzando il campo inputUris.

    • ERROR_DIRECTORY: facoltativo. Una directory Cloud Storage per le informazioni sugli errori relativi all'importazione, ad esempio gs://<your-gcs-bucket>/directory/import_errors. Google consiglia lasciando questo campo vuoto per consentire a Vertex AI Search automaticamente una directory temporanea.

    • RECONCILIATION_MODE: facoltativo. I valori sono FULL e INCREMENTAL. Il valore predefinito è INCREMENTAL. La specifica di INCREMENTAL provoca un aggiornamento incrementale dei dati da Cloud Storage al tuo data store. Viene eseguita un'operazione di upsert, che aggiunge nuovi documenti e sostituisce i documenti esistenti con quelli aggiornati ID. Se specifichi FULL, viene eseguita una rebase completa dei documenti nel datastore. In altre parole, i documenti nuovi e aggiornati vengono aggiunti del datastore e i documenti non presenti in Cloud Storage vengono rimosso dal datastore. La modalità FULL è utile se vuoi per eliminare automaticamente i documenti che non ti servono più.

    • AUTO_GENERATE_IDS: facoltativo. Specifica se generano automaticamente gli ID documento. Se impostato su true, gli ID documento vengono generati sulla base di un hash del payload. Tieni presente che gli ID documento generati potrebbero non rimanere coerenti in più importazioni. Se generi automaticamente gli ID in più importazioni, Google consiglia vivamente di impostare reconciliationMode su FULL per mantenere gli ID documento coerenti.

      Specifica autoGenerateIds solo quando gcsSource.dataSchema è impostato su custom o csv. In caso contrario, viene restituito un errore INVALID_ARGUMENT restituito. Se non specifichi autoGenerateIds o non lo imposti su false, devi specificare idField. In caso contrario, l'importazione dei documenti non andrà a buon fine.

    • ID_FIELD: facoltativo. Specifica quali campi sono gli ID documento. Per i documenti di origine Cloud Storage, idField specifica il nome nei campi JSON che sono gli ID documento. Ad esempio, se {"my_id":"some_uuid"} è il campo ID documento in uno dei tuoi documenti, specifica "idField":"my_id". In questo modo, tutti i campi JSON con il nome "my_id" vengono identificati come ID documento.

      Specifica questo campo solo se: (1) gcsSource.dataSchema è impostato su custom o csv e (2) auto_generate_ids è impostato su false o non è specificato. In caso contrario, viene restituito un errore INVALID_ARGUMENT.

      Tieni presente che il valore del campo JSON di Cloud Storage deve essere di tipo stringa, deve essere compreso tra 1 e 63 caratteri e deve essere conforme a RFC-1034. In caso contrario, l'importazione dei documenti non andrà a buon fine.

      Tieni presente che il nome del campo JSON specificato da id_field deve essere di tipo di stringa, deve essere compreso tra 1 e 63 caratteri e deve essere conforme in RFC-1034. In caso contrario, l'importazione dei documenti non andrà a buon fine.

C#

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API C# Vertex AI Agent Builder.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

using Google.Cloud.DiscoveryEngine.V1;
using Google.LongRunning;

public sealed partial class GeneratedDataStoreServiceClientSnippets
{
    /// <summary>Snippet for CreateDataStore</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void CreateDataStoreRequestObject()
    {
        // Create client
        DataStoreServiceClient dataStoreServiceClient = DataStoreServiceClient.Create();
        // Initialize request argument(s)
        CreateDataStoreRequest request = new CreateDataStoreRequest
        {
            ParentAsCollectionName = CollectionName.FromProjectLocationCollection("[PROJECT]", "[LOCATION]", "[COLLECTION]"),
            DataStore = new DataStore(),
            DataStoreId = "",
            CreateAdvancedSiteSearch = false,
            SkipDefaultSchemaCreation = false,
        };
        // Make the request
        Operation<DataStore, CreateDataStoreMetadata> response = dataStoreServiceClient.CreateDataStore(request);

        // Poll until the returned long-running operation is complete
        Operation<DataStore, CreateDataStoreMetadata> completedResponse = response.PollUntilCompleted();
        // Retrieve the operation result
        DataStore result = completedResponse.Result;

        // Or get the name of the operation
        string operationName = response.Name;
        // This name can be stored, then the long-running operation retrieved later by name
        Operation<DataStore, CreateDataStoreMetadata> retrievedResponse = dataStoreServiceClient.PollOnceCreateDataStore(operationName);
        // Check if the retrieved long-running operation has completed
        if (retrievedResponse.IsCompleted)
        {
            // If it has completed, then access the result
            DataStore retrievedResult = retrievedResponse.Result;
        }
    }
}

Importa documenti

using Google.Cloud.DiscoveryEngine.V1;
using Google.LongRunning;
using Google.Protobuf.WellKnownTypes;

public sealed partial class GeneratedDocumentServiceClientSnippets
{
    /// <summary>Snippet for ImportDocuments</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void ImportDocumentsRequestObject()
    {
        // Create client
        DocumentServiceClient documentServiceClient = DocumentServiceClient.Create();
        // Initialize request argument(s)
        ImportDocumentsRequest request = new ImportDocumentsRequest
        {
            ParentAsBranchName = BranchName.FromProjectLocationDataStoreBranch("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]"),
            InlineSource = new ImportDocumentsRequest.Types.InlineSource(),
            ErrorConfig = new ImportErrorConfig(),
            ReconciliationMode = ImportDocumentsRequest.Types.ReconciliationMode.Unspecified,
            UpdateMask = new FieldMask(),
            AutoGenerateIds = false,
            IdField = "",
        };
        // Make the request
        Operation<ImportDocumentsResponse, ImportDocumentsMetadata> response = documentServiceClient.ImportDocuments(request);

        // Poll until the returned long-running operation is complete
        Operation<ImportDocumentsResponse, ImportDocumentsMetadata> completedResponse = response.PollUntilCompleted();
        // Retrieve the operation result
        ImportDocumentsResponse result = completedResponse.Result;

        // Or get the name of the operation
        string operationName = response.Name;
        // This name can be stored, then the long-running operation retrieved later by name
        Operation<ImportDocumentsResponse, ImportDocumentsMetadata> retrievedResponse = documentServiceClient.PollOnceImportDocuments(operationName);
        // Check if the retrieved long-running operation has completed
        if (retrievedResponse.IsCompleted)
        {
            // If it has completed, then access the result
            ImportDocumentsResponse retrievedResult = retrievedResponse.Result;
        }
    }
}

Go

Per ulteriori informazioni, consulta API Go di Vertex AI Agent Builder documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


package main

import (
	"context"

	discoveryengine "cloud.google.com/go/discoveryengine/apiv1"
	discoveryenginepb "cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb"
)

func main() {
	ctx := context.Background()
	// This snippet has been automatically generated and should be regarded as a code template only.
	// It will require modifications to work:
	// - It may require correct/in-range values for request initialization.
	// - It may require specifying regional endpoints when creating the service client as shown in:
	//   https://pkg.go.dev/cloud.google.com/go#hdr-Client_Options
	c, err := discoveryengine.NewDataStoreClient(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	defer c.Close()

	req := &discoveryenginepb.CreateDataStoreRequest{
		// TODO: Fill request struct fields.
		// See https://pkg.go.dev/cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb#CreateDataStoreRequest.
	}
	op, err := c.CreateDataStore(ctx, req)
	if err != nil {
		// TODO: Handle error.
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	// TODO: Use resp.
	_ = resp
}

Importa documenti


package main

import (
	"context"

	discoveryengine "cloud.google.com/go/discoveryengine/apiv1"
	discoveryenginepb "cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb"
)

func main() {
	ctx := context.Background()
	// This snippet has been automatically generated and should be regarded as a code template only.
	// It will require modifications to work:
	// - It may require correct/in-range values for request initialization.
	// - It may require specifying regional endpoints when creating the service client as shown in:
	//   https://pkg.go.dev/cloud.google.com/go#hdr-Client_Options
	c, err := discoveryengine.NewDocumentClient(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	defer c.Close()

	req := &discoveryenginepb.ImportDocumentsRequest{
		// TODO: Fill request struct fields.
		// See https://pkg.go.dev/cloud.google.com/go/discoveryengine/apiv1/discoveryenginepb#ImportDocumentsRequest.
	}
	op, err := c.ImportDocuments(ctx, req)
	if err != nil {
		// TODO: Handle error.
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	// TODO: Use resp.
	_ = resp
}

Java

Per ulteriori informazioni, consulta API Java di Vertex AI Agent Builder documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

import com.google.cloud.discoveryengine.v1.CollectionName;
import com.google.cloud.discoveryengine.v1.CreateDataStoreRequest;
import com.google.cloud.discoveryengine.v1.DataStore;
import com.google.cloud.discoveryengine.v1.DataStoreServiceClient;

public class SyncCreateDataStore {

  public static void main(String[] args) throws Exception {
    syncCreateDataStore();
  }

  public static void syncCreateDataStore() throws Exception {
    // This snippet has been automatically generated and should be regarded as a code template only.
    // It will require modifications to work:
    // - It may require correct/in-range values for request initialization.
    // - It may require specifying regional endpoints when creating the service client as shown in
    // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
    try (DataStoreServiceClient dataStoreServiceClient = DataStoreServiceClient.create()) {
      CreateDataStoreRequest request =
          CreateDataStoreRequest.newBuilder()
              .setParent(CollectionName.of("[PROJECT]", "[LOCATION]", "[COLLECTION]").toString())
              .setDataStore(DataStore.newBuilder().build())
              .setDataStoreId("dataStoreId929489618")
              .setCreateAdvancedSiteSearch(true)
              .setSkipDefaultSchemaCreation(true)
              .build();
      DataStore response = dataStoreServiceClient.createDataStoreAsync(request).get();
    }
  }
}

Importa documenti

import com.google.cloud.discoveryengine.v1.BranchName;
import com.google.cloud.discoveryengine.v1.DocumentServiceClient;
import com.google.cloud.discoveryengine.v1.ImportDocumentsRequest;
import com.google.cloud.discoveryengine.v1.ImportDocumentsResponse;
import com.google.cloud.discoveryengine.v1.ImportErrorConfig;
import com.google.protobuf.FieldMask;

public class SyncImportDocuments {

  public static void main(String[] args) throws Exception {
    syncImportDocuments();
  }

  public static void syncImportDocuments() throws Exception {
    // This snippet has been automatically generated and should be regarded as a code template only.
    // It will require modifications to work:
    // - It may require correct/in-range values for request initialization.
    // - It may require specifying regional endpoints when creating the service client as shown in
    // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
    try (DocumentServiceClient documentServiceClient = DocumentServiceClient.create()) {
      ImportDocumentsRequest request =
          ImportDocumentsRequest.newBuilder()
              .setParent(
                  BranchName.ofProjectLocationDataStoreBranchName(
                          "[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[BRANCH]")
                      .toString())
              .setErrorConfig(ImportErrorConfig.newBuilder().build())
              .setUpdateMask(FieldMask.newBuilder().build())
              .setAutoGenerateIds(true)
              .setIdField("idField1629396127")
              .build();
      ImportDocumentsResponse response = documentServiceClient.importDocumentsAsync(request).get();
    }
  }
}

Node.js

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js Vertex AI Agent Builder.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

/**
 * This snippet has been automatically generated and should be regarded as a code template only.
 * It will require modifications to work.
 * It may require correct/in-range values for request initialization.
 * TODO(developer): Uncomment these variables before running the sample.
 */
/**
 *  Required. The parent resource name, such as
 *  `projects/{project}/locations/{location}/collections/{collection}`.
 */
// const parent = 'abc123'
/**
 *  Required. The DataStore google.cloud.discoveryengine.v1.DataStore  to
 *  create.
 */
// const dataStore = {}
/**
 *  Required. The ID to use for the
 *  DataStore google.cloud.discoveryengine.v1.DataStore, which will become
 *  the final component of the
 *  DataStore google.cloud.discoveryengine.v1.DataStore's resource name.
 *  This field must conform to RFC-1034 (https://tools.ietf.org/html/rfc1034)
 *  standard with a length limit of 63 characters. Otherwise, an
 *  INVALID_ARGUMENT error is returned.
 */
// const dataStoreId = 'abc123'
/**
 *  A boolean flag indicating whether user want to directly create an advanced
 *  data store for site search.
 *  If the data store is not configured as site
 *  search (GENERIC vertical and PUBLIC_WEBSITE content_config), this flag will
 *  be ignored.
 */
// const createAdvancedSiteSearch = true
/**
 *  A boolean flag indicating whether to skip the default schema creation for
 *  the data store. Only enable this flag if you are certain that the default
 *  schema is incompatible with your use case.
 *  If set to true, you must manually create a schema for the data store before
 *  any documents can be ingested.
 *  This flag cannot be specified if `data_store.starting_schema` is specified.
 */
// const skipDefaultSchemaCreation = true

// Imports the Discoveryengine library
const {DataStoreServiceClient} = require('@google-cloud/discoveryengine').v1;

// Instantiates a client
const discoveryengineClient = new DataStoreServiceClient();

async function callCreateDataStore() {
  // Construct request
  const request = {
    parent,
    dataStore,
    dataStoreId,
  };

  // Run request
  const [operation] = await discoveryengineClient.createDataStore(request);
  const [response] = await operation.promise();
  console.log(response);
}

callCreateDataStore();

Importa documenti

/**
 * This snippet has been automatically generated and should be regarded as a code template only.
 * It will require modifications to work.
 * It may require correct/in-range values for request initialization.
 * TODO(developer): Uncomment these variables before running the sample.
 */
/**
 *  The Inline source for the input content for documents.
 */
// const inlineSource = {}
/**
 *  Cloud Storage location for the input content.
 */
// const gcsSource = {}
/**
 *  BigQuery input source.
 */
// const bigquerySource = {}
/**
 *  FhirStore input source.
 */
// const fhirStoreSource = {}
/**
 *  Spanner input source.
 */
// const spannerSource = {}
/**
 *  Cloud SQL input source.
 */
// const cloudSqlSource = {}
/**
 *  Firestore input source.
 */
// const firestoreSource = {}
/**
 *  AlloyDB input source.
 */
// const alloyDbSource = {}
/**
 *  Cloud Bigtable input source.
 */
// const bigtableSource = {}
/**
 *  Required. The parent branch resource name, such as
 *  `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/branches/{branch}`.
 *  Requires create/update permission.
 */
// const parent = 'abc123'
/**
 *  The desired location of errors incurred during the Import.
 */
// const errorConfig = {}
/**
 *  The mode of reconciliation between existing documents and the documents to
 *  be imported. Defaults to
 *  ReconciliationMode.INCREMENTAL google.cloud.discoveryengine.v1.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL.
 */
// const reconciliationMode = {}
/**
 *  Indicates which fields in the provided imported documents to update. If
 *  not set, the default is to update all fields.
 */
// const updateMask = {}
/**
 *  Whether to automatically generate IDs for the documents if absent.
 *  If set to `true`,
 *  Document.id google.cloud.discoveryengine.v1.Document.id s are
 *  automatically generated based on the hash of the payload, where IDs may not
 *  be consistent during multiple imports. In which case
 *  ReconciliationMode.FULL google.cloud.discoveryengine.v1.ImportDocumentsRequest.ReconciliationMode.FULL 
 *  is highly recommended to avoid duplicate contents. If unset or set to
 *  `false`, Document.id google.cloud.discoveryengine.v1.Document.id s have
 *  to be specified using
 *  id_field google.cloud.discoveryengine.v1.ImportDocumentsRequest.id_field,
 *  otherwise, documents without IDs fail to be imported.
 *  Supported data sources:
 *  * GcsSource google.cloud.discoveryengine.v1.GcsSource.
 *  GcsSource.data_schema google.cloud.discoveryengine.v1.GcsSource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * BigQuerySource google.cloud.discoveryengine.v1.BigQuerySource.
 *  BigQuerySource.data_schema google.cloud.discoveryengine.v1.BigQuerySource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * SpannerSource google.cloud.discoveryengine.v1.SpannerSource.
 *  * CloudSqlSource google.cloud.discoveryengine.v1.CloudSqlSource.
 *  * FirestoreSource google.cloud.discoveryengine.v1.FirestoreSource.
 *  * BigtableSource google.cloud.discoveryengine.v1.BigtableSource.
 */
// const autoGenerateIds = true
/**
 *  The field indicates the ID field or column to be used as unique IDs of
 *  the documents.
 *  For GcsSource google.cloud.discoveryengine.v1.GcsSource  it is the key of
 *  the JSON field. For instance, `my_id` for JSON `{"my_id": "some_uuid"}`.
 *  For others, it may be the column name of the table where the unique ids are
 *  stored.
 *  The values of the JSON field or the table column are used as the
 *  Document.id google.cloud.discoveryengine.v1.Document.id s. The JSON field
 *  or the table column must be of string type, and the values must be set as
 *  valid strings conform to RFC-1034 (https://tools.ietf.org/html/rfc1034)
 *  with 1-63 characters. Otherwise, documents without valid IDs fail to be
 *  imported.
 *  Only set this field when
 *  auto_generate_ids google.cloud.discoveryengine.v1.ImportDocumentsRequest.auto_generate_ids 
 *  is unset or set as `false`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  If it is unset, a default value `_id` is used when importing from the
 *  allowed data sources.
 *  Supported data sources:
 *  * GcsSource google.cloud.discoveryengine.v1.GcsSource.
 *  GcsSource.data_schema google.cloud.discoveryengine.v1.GcsSource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * BigQuerySource google.cloud.discoveryengine.v1.BigQuerySource.
 *  BigQuerySource.data_schema google.cloud.discoveryengine.v1.BigQuerySource.data_schema 
 *  must be `custom` or `csv`. Otherwise, an INVALID_ARGUMENT error is thrown.
 *  * SpannerSource google.cloud.discoveryengine.v1.SpannerSource.
 *  * CloudSqlSource google.cloud.discoveryengine.v1.CloudSqlSource.
 *  * FirestoreSource google.cloud.discoveryengine.v1.FirestoreSource.
 *  * BigtableSource google.cloud.discoveryengine.v1.BigtableSource.
 */
// const idField = 'abc123'

// Imports the Discoveryengine library
const {DocumentServiceClient} = require('@google-cloud/discoveryengine').v1;

// Instantiates a client
const discoveryengineClient = new DocumentServiceClient();

async function callImportDocuments() {
  // Construct request
  const request = {
    parent,
  };

  // Run request
  const [operation] = await discoveryengineClient.importDocuments(request);
  const [response] = await operation.promise();
  console.log(response);
}

callImportDocuments();

Python

Per ulteriori informazioni, consulta API Python di Vertex AI Agent Builder documentazione di riferimento.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa documenti

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"

# Examples:
# - Unstructured documents
#   - `gs://bucket/directory/file.pdf`
#   - `gs://bucket/directory/*.pdf`
# - Unstructured documents with JSONL Metadata
#   - `gs://bucket/directory/file.json`
# - Unstructured documents with CSV Metadata
#   - `gs://bucket/directory/file.csv`
# gcs_uri = "YOUR_GCS_PATH"

#  For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.DocumentServiceClient(client_options=client_options)

# The full resource name of the search engine branch.
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
parent = client.branch_path(
    project=project_id,
    location=location,
    data_store=data_store_id,
    branch="default_branch",
)

request = discoveryengine.ImportDocumentsRequest(
    parent=parent,
    gcs_source=discoveryengine.GcsSource(
        # Multiple URIs are supported
        input_uris=[gcs_uri],
        # Options:
        # - `content` - Unstructured documents (PDF, HTML, DOC, TXT, PPTX)
        # - `custom` - Unstructured documents with custom JSONL metadata
        # - `document` - Structured documents in the discoveryengine.Document format.
        # - `csv` - Unstructured documents with CSV metadata
        data_schema="content",
    ),
    # Options: `FULL`, `INCREMENTAL`
    reconciliation_mode=discoveryengine.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL,
)

# Make the request
operation = client.import_documents(request=request)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.ImportDocumentsMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Ruby

Per ulteriori informazioni, consulta API Ruby di Vertex AI Agent Builder documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore

require "google/cloud/discovery_engine/v1"

##
# Snippet for the create_data_store call in the DataStoreService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1::DataStoreService::Client#create_data_store.
#
def create_data_store
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1::DataStoreService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1::CreateDataStoreRequest.new

  # Call the create_data_store method.
  result = client.create_data_store request

  # The returned object is of type Gapic::Operation. You can use it to
  # check the status of an operation, cancel it, or wait for results.
  # Here is how to wait for a response.
  result.wait_until_done! timeout: 60
  if result.response?
    p result.response
  else
    puts "No response received."
  end
end

Importa documenti

require "google/cloud/discovery_engine/v1"

##
# Snippet for the import_documents call in the DocumentService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1::DocumentService::Client#import_documents.
#
def import_documents
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1::DocumentService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1::ImportDocumentsRequest.new

  # Call the import_documents method.
  result = client.import_documents request

  # The returned object is of type Gapic::Operation. You can use it to
  # check the status of an operation, cancel it, or wait for results.
  # Here is how to wait for a response.
  result.wait_until_done! timeout: 60
  if result.response?
    p result.response
  else
    puts "No response received."
  end
end

Connettiti a Cloud Storage con sincronizzazione periodica

Prima di importare i dati, consulta Preparare i dati per l'importazione.

La procedura seguente descrive come creare un connettore dati che associa una località di Cloud Storage con dati di Vertex AI Search e come specificare una cartella o un file in quella posizione per i dati che vuoi creare. Datastore secondari dei connettori dati sono chiamati datastore entity.

I dati vengono sincronizzati periodicamente con il data store delle entità. Puoi specificare ogni giorno, ogni tre o cinque giorni.

Console

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Vai alla pagina Datastore.

  3. Fai clic su Crea datastore.

  4. Nella pagina Origine, seleziona Cloud Storage.

  5. Seleziona il tipo di dati che vuoi importare.

  6. Fai clic su Periodico.

  7. Seleziona Frequenza di sincronizzazione, ovvero la frequenza con cui vuoi Connettore Vertex AI Search per la sincronizzazione con Cloud Storage in ogni località. Puoi modificare la frequenza in un secondo momento.

  8. Nella sezione Seleziona una cartella o un file da importare, seleziona Cartella o File.

  9. Fai clic su Sfoglia e scegli i dati che hai preparato per l'importazione, poi fai clic su Seleziona. In alternativa, inserisci la località direttamente nel campo gs://.

  10. Fai clic su Continua.

  11. Scegli una regione per il connettore dati.

  12. Inserisci un nome per il connettore dati.

  13. (Facoltativo) Se hai selezionato documenti non strutturati, puoi selezionare le opzioni di analisi e suddivisione per i documenti. Per confrontare i parser, consulta Analisi documenti. Per informazioni sul chunking, consulta Documenti Chunk per RAG.

    L'analizzatore sintattico OCR e l'analizzatore sintattico del layout possono comportare costi aggiuntivi. Vedi Documento prezzi delle funzionalità di IA.

    Per selezionare un parser, espandi Opzioni di elaborazione documenti e specifica le opzioni del parser che vuoi utilizzare.

  14. Fai clic su Crea.

    Ora hai creato un connettore dati che sincronizzerà periodicamente i dati con la posizione Cloud Storage. Hai anche creato un'entità denominato gcs_store.

  15. Per controllare lo stato dell'importazione, vai alla pagina Data Store e Fai clic sul nome del connettore dati per visualizzarne i dettagli nella pagina Dati

    Scheda Attività di importazione dati. Quando la colonna dello stato nella scheda Attività di importazione dei dati passa da In corso a Riuscito, la prima importazione è completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere da alcuni minuti a diverse ore.

Dopo aver configurato l'origine dati e importato i dati la prima volta, i dati vengono sincronizzati da tale sorgente con la frequenza selezionata durante la configurazione. Circa un'ora dopo la creazione del connettore dati, avviene la prima sincronizzazione. La sincronizzazione successiva avviene circa 24, 72 o 120 ore dopo.

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo che l'app e il datastore sono per l'impostazione, consulta Visualizza i risultati di ricerca.

Sincronizza da Google Drive

Per sincronizzare i dati da Google Drive, attieniti alla procedura seguente per creare: un datastore e importare i dati utilizzando la console Google Cloud.

I dati di Google Drive vengono sincronizzati continuamente con Vertex AI Search dopo la creazione del tuo datastore.

Prima di iniziare:

  • Devi aver eseguito l'accesso alla console Google Cloud con lo stesso account che utilizzi per l'istanza di Google Drive che prevedi connettersi. Vertex AI Search utilizza il tuo ID cliente Google Workspace per connettersi a Google Drive.

  • Configura il controllo dell'accesso per Google Drive. Per informazioni sulla configurazione del controllo dell'accesso, consulta Utilizzare il controllo dell'accesso alle origini dati.

Console

Per utilizzare la console per rendere disponibili per la ricerca i dati di Google Drive, segui questi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Vai alla pagina Datastore.

  3. Fai clic su Nuovo datastore.

  4. Nella pagina Origine, seleziona Google Drive.

  5. Scegli una regione per il tuo datastore.

  6. Inserisci un nome per il datastore.

  7. Fai clic su Crea. A seconda delle dimensioni dei dati, l'importazione può richiedere da diversi minuti a diverse ore. Attendi almeno un'ora prima di utilizzare un datastore per la ricerca.

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo che l'app e il datastore sono per l'impostazione, consulta Visualizza i risultati di ricerca.

Importa da Cloud SQL

Per importare i dati da Cloud SQL, segui questi passaggi per configurare l'accesso a Cloud SQL, creare un data store e importare i dati.

Configurare l'accesso al bucket di staging per le istanze Cloud SQL

Durante l'importazione dei dati da Cloud SQL, i dati vengono prima impostati in una nel bucket Cloud Storage. Segui questi passaggi per assegnare a Cloud SQL l'accesso all'istanza di archiviazione dei bucket Cloud Storage.

  1. Nella console Google Cloud, vai alla pagina SQL.

    SQL

  2. Fai clic sull'istanza Cloud SQL da cui vuoi eseguire l'importazione.

  3. Copia l'identificatore dell'account di servizio dell'istanza, che appare come un un indirizzo email, ad esempio p9876-abcd33f@gcp-sa-cloud-sql.iam.gserviceaccount.com.

  4. Vai alla pagina IAM e amministrazione.

    IAM e Amministratore

  5. Fai clic su Concedi accesso.

  6. In Nuove entità, inserisci l'identificatore dell'account di servizio dell'istanza e seleziona Cloud Storage > Amministratore Storage.

  7. Fai clic su Salva.

Successivo:

Configura l'accesso a Cloud SQL da un progetto diverso

Per concedere a Vertex AI Search l'accesso ai dati Cloud SQL di un progetto diverso:

  1. Sostituisci la seguente variabile PROJECT_NUMBER con il numero del progetto Vertex AI Search, quindi copia i contenuti del blocco di codice. Questo è l'identificatore del tuo account di servizio Vertex AI Search:

    service-PROJECT_NUMBER@gcp-sa-discoveryengine.iam.gserviceaccount.com`
    
  2. Vai alla pagina IAM e amministrazione.

    IAM e Amministratore

  3. Passa al tuo progetto Cloud SQL nella pagina IAM e amministrazione e fai clic su Concedi l'accesso.

  4. In Nuove entità, inserisci l'identificatore per l'account di servizio e seleziona Cloud SQL > Visualizzatore Cloud SQL.

  5. Fai clic su Salva.

Poi, vai a Importare i dati da Cloud SQL.

Importare dati da Cloud SQL

Console

Per utilizzare la console per importare i dati da Cloud SQL, segui questi passaggi: passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Vai alla pagina Datastore.

  3. Fai clic su Nuovo datastore.

  4. Nella pagina Origine, seleziona Cloud SQL.

  5. Specifica l'ID progetto, l'ID istanza, l'ID database e l'ID tabella dei dati che intendi importare.

  6. Fai clic su Sfoglia e scegli un percorso Cloud Storage intermedio in cui esporta i dati e fai clic su Seleziona. In alternativa, inserisci la località direttamente nel campo gs://.

  7. Scegli se attivare l'esportazione serverless. L'esportazione serverless comporta costi aggiuntivi. Per informazioni sull'esportazione serverless, consulta Ridurre al minimo l'impatto sulle prestazioni delle esportazioni consulta la documentazione di Cloud SQL.

  8. Fai clic su Continua.

  9. Scegli una regione per il tuo datastore.

  10. Inserisci un nome per il datastore.

  11. Fai clic su Crea.

  12. Per controllare lo stato dell'importazione, vai alla pagina Datastore e fai clic sul nome del datastore per visualizzarne i dettagli nella pagina Dati. Quando la colonna dello stato nella scheda Attività cambia da In corso su Importazione completata, l'importazione è completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere diverse minuti o diverse ore.

REST

Per utilizzare la riga di comando per creare un data store e importare i dati da Cloud SQL:

  1. Creare un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1alpha/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"],
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del progetto.
    • DATA_STORE_ID: l'ID del datastore. L'ID può Deve contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DISPLAY_NAME: il nome visualizzato del datastore. Questo messaggio potrebbe essere visualizzato nella console Google Cloud.
  2. Importa i dati da Cloud SQL.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:import" \
      -d '{
        "cloudSqlSource": {
          "projectId": "SQL_PROJECT_ID",
          "instanceId": "INSTANCE_ID",
          "databaseId": "DATABASE_ID",
          "tableId": "TABLE_ID",
          "gcsStagingDir": "STAGING_DIRECTORY"
        },
        "reconciliationMode": "RECONCILIATION_MODE",
        "autoGenerateIds": "AUTO_GENERATE_IDS",
        "idField": "ID_FIELD",
      }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID di Vertex AI Search progetto.
    • DATA_STORE_ID: l'ID del datastore. L'ID può Deve contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • SQL_PROJECT_ID: l'ID del tuo Cloud SQL progetto.
    • INSTANCE_ID: l'ID dell'istanza Cloud SQL.
    • DATABASE_ID: l'ID del tuo database Cloud SQL.
    • TABLE_ID: l'ID della tabella Cloud SQL.
    • STAGING_DIRECTORY: facoltativo. Cloud Storage directory, ad esempio gs://<your-gcs-bucket>/directory/import_errors.
    • RECONCILIATION_MODE: facoltativo. I valori sono FULL e INCREMENTAL. Il valore predefinito è INCREMENTAL. Specifica INCREMENTAL causa un aggiornamento incrementale dei dati da Cloud SQL un datastore. Viene eseguita un'operazione di upsert, che aggiunge nuovi documenti e sostituisce quelli esistenti con documenti aggiornati con lo stesso ID. Se specifichi FULL, viene eseguita una rebase completa dei documenti nel tuo datastore. In altre parole, i documenti nuovi e aggiornati vengono aggiunti al tuo data store e quelli che non sono presenti in Cloud SQL vengono rimossi. La modalità FULL è utile se vuoi eliminare automaticamente i documenti che non ti servono più.

Python

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python Vertex AI Agent Builder.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa documenti

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"
# sql_project_id = "YOUR_SQL_PROJECT_ID"
# sql_instance_id = "YOUR_SQL_INSTANCE_ID"
# sql_database_id = "YOUR_SQL_DATABASE_ID"
# sql_table_id = "YOUR_SQL_TABLE_ID"

#  For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.DocumentServiceClient(client_options=client_options)

# The full resource name of the search engine branch.
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
parent = client.branch_path(
    project=project_id,
    location=location,
    data_store=data_store_id,
    branch="default_branch",
)

request = discoveryengine.ImportDocumentsRequest(
    parent=parent,
    cloud_sql_source=discoveryengine.CloudSqlSource(
        project_id=sql_project_id,
        instance_id=sql_instance_id,
        database_id=sql_database_id,
        table_id=sql_table_id,
    ),
    # Options: `FULL`, `INCREMENTAL`
    reconciliation_mode=discoveryengine.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL,
)

# Make the request
operation = client.import_documents(request=request)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.ImportDocumentsMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo la configurazione dell'app e del datastore, consulta Generare risultati di ricerca.

Importa da Spanner

Per importare i dati da Spanner, segui i passaggi riportati di seguito per creare un data store e importare i dati utilizzando la console Google Cloud o l'API.

Configurare l'accesso a Spanner da un altro progetto

Se i dati di Spanner si trovano nello stesso progetto di Vertex AI Search, vai a Importare i dati da Spanner.

Per concedere a Vertex AI Search l'accesso ai dati Spanner che sono in un altro progetto, segui questi passaggi:

  1. Sostituisci la seguente variabile PROJECT_NUMBER con il numero del progetto Vertex AI Search e poi copia i contenuti di questo blocco di codice. Questo è il tuo account di servizio Vertex AI Search identificatore:

    service-PROJECT_NUMBER@gcp-sa-discoveryengine.iam.gserviceaccount.com
    
  2. Vai alla sezione IAM e Console di amministrazione.

    IAM e Amministratore

  3. Passa al tuo progetto Spanner nella pagina IAM e amministrazione e fai clic su Concedi l'accesso.

  4. In Nuove entità, inserisci l'identificatore dell'account di servizio e seleziona una delle seguenti opzioni:

    • Se non utilizzi Data Boost durante l'importazione, seleziona Cloud Spanner > Lettore database Cloud Spanner.
    • Se prevedi di utilizzare Data Boost durante l'importazione, seleziona Cloud Spanner > Amministratore database Cloud Spanner o un ruolo personalizzato con le autorizzazioni di Lettore database Cloud Spanner e spanner.databases.useDataBoost. Per informazioni su Data Boost, vedi Panoramica di Data Boost nella documentazione di Spanner.
  5. Fai clic su Salva.

A questo punto, vai a Importare i dati da Spanner.

Importa dati da Spanner

Console

Per utilizzare la console per importare i dati da Spanner, segui questi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Vai alla pagina Datastore.

  3. Fai clic su Nuovo datastore.

  4. Nella pagina Origine, seleziona Cloud Spanner.

  5. Specifica l'ID progetto, l'ID istanza, l'ID database e l'ID tabella dei dati che prevedi di importare.

  6. Seleziona se attivare il potenziamento dei dati. Per informazioni su Data Boost, consulta la panoramica di Data Boost nella documentazione di Spanner.

  7. Fai clic su Continua.

  8. Scegli una regione per il tuo datastore.

  9. Inserisci un nome per il datastore.

  10. Fai clic su Crea.

  11. Per controllare lo stato dell'importazione, vai alla pagina Datastore e fai clic sul nome del datastore per visualizzarne i dettagli nella pagina Dati. Quando la colonna dello stato nella scheda Attività cambia da In corso su Importazione completata, l'importazione è completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere diverse minuti o diverse ore.

REST

Utilizzare la riga di comando per creare un datastore e importare i dati da Spanner, segui questi passaggi:

  1. Creare un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1alpha/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"],
      "contentConfig": "CONTENT_REQUIRED",
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Vertex AI Search.
    • DATA_STORE_ID: l'ID del datastore. L'ID può contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DISPLAY_NAME: il nome visualizzato del datastore. Questo messaggio potrebbe essere visualizzato nella console Google Cloud.
  2. Importa i dati da Spanner.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:import" \
      -d '{
        "cloudSpannerSource": {
          "projectId": "SPANNER_PROJECT_ID",
          "instanceId": "INSTANCE_ID",
          "databaseId": "DATABASE_ID",
          "tableId": "TABLE_ID",
          "enableDataBoost": "DATA_BOOST_BOOLEAN"
        },
        "reconciliationMode": "RECONCILIATION_MODE",
        "autoGenerateIds": "AUTO_GENERATE_IDS",
        "idField": "ID_FIELD",
      }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Vertex AI Search.
    • DATA_STORE_ID: l'ID del datastore.
    • SPANNER_PROJECT_ID: l'ID del tuo progetto Spanner.
    • INSTANCE_ID: l'ID della tua istanza Spanner.
    • DATABASE_ID: l'ID del tuo database Spanner.
    • TABLE_ID: l'ID della tabella Spanner.
    • DATA_BOOST_BOOLEAN: facoltativo. Indica se attivare Data Boost. Per informazioni su Data Boost, consulta la panoramica di Data Boost nella documentazione di Spanner.
    • RECONCILIATION_MODE: facoltativo. I valori sono FULL e INCREMENTAL. Il valore predefinito è INCREMENTAL. Specificare INCREMENTAL causa un aggiornamento incrementale dei dati da Spanner al tuo datastore. Viene eseguita un'operazione upsert, che aggiunge nuovi documenti e sostituisce quelli esistenti con documenti aggiornati con lo stesso ID. Se specifichi FULL, viene eseguita una rebase completa dei documenti nel tuo datastore. In altre parole, nuovi vengono aggiunti al datastore i documenti aggiornati e i documenti non si trovano in Spanner vengono rimossi dal datastore. La La modalità FULL è utile se vuoi eliminare automaticamente i documenti che non ti servono più.
    • AUTO_GENERATE_IDS: facoltativo. Specifica se generano automaticamente gli ID documento. Se impostato su true, gli ID documento vengono generati in base a un hash del payload. Tieni presente che gli ID documento generati potrebbero non rimanere coerenti in più importazioni. Se gli ID vengono generati automaticamente in più importazioni, Google ha consiglia di impostare reconciliationMode su FULL per mantenere gli ID dei documenti coerenti.

    • ID_FIELD: facoltativo. Specifica quali campi sono ID documento.

Python

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python Vertex AI Agent Builder.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa documenti

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"
# spanner_project_id = "YOUR_SPANNER_PROJECT_ID"
# spanner_instance_id = "YOUR_SPANNER_INSTANCE_ID"
# spanner_database_id = "YOUR_SPANNER_DATABASE_ID"
# spanner_table_id = "YOUR_SPANNER_TABLE_ID"

#  For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.DocumentServiceClient(client_options=client_options)

# The full resource name of the search engine branch.
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
parent = client.branch_path(
    project=project_id,
    location=location,
    data_store=data_store_id,
    branch="default_branch",
)

request = discoveryengine.ImportDocumentsRequest(
    parent=parent,
    spanner_source=discoveryengine.SpannerSource(
        project_id=spanner_project_id,
        instance_id=spanner_instance_id,
        database_id=spanner_database_id,
        table_id=spanner_table_id,
    ),
    # Options: `FULL`, `INCREMENTAL`
    reconciliation_mode=discoveryengine.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL,
)

# Make the request
operation = client.import_documents(request=request)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.ImportDocumentsMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi Crea un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo la configurazione dell'app e del datastore, consulta Generare risultati di ricerca.

Importa da Firestore

Per importare i dati da Firestore, segui questi passaggi per creare un datastore e importare i dati utilizzando la console Google Cloud o l'API.

Se i tuoi dati Firestore si trovano nello stesso progetto di Vertex AI Search, vai a Importare i dati da Firestore.

Se i dati Firestore si trovano in un progetto diverso da quello Progetto Vertex AI Search, vai a Configurare Firestore l'accesso alle app.

Configurare l'accesso a Firestore da un altro progetto

Per concedere a Vertex AI Search l'accesso ai dati di Firestore che si trovano in un altro progetto:

  1. Sostituisci la seguente variabile PROJECT_NUMBER con il numero del progetto Vertex AI Search e poi copia i contenuti di questo blocco di codice. Questo è il tuo account di servizio Vertex AI Search identificatore:

    service-PROJECT_NUMBER@gcp-sa-discoveryengine.iam.gserviceaccount.com
    
  2. Vai alla pagina IAM e amministrazione.

    IAM e Amministratore

  3. Passa al tuo progetto Firestore nella pagina IAM e amministrazione e fai clic su Concedi l'accesso.

  4. In Nuove entità, inserisci l'identificatore dell'account di servizio dell'istanza e seleziona il ruolo Datastore > Amministratore di importazione ed esportazione di Cloud Datastore.

  5. Fai clic su Salva.

  6. Torna al tuo progetto Vertex AI Search.

Quindi, vai a Importare i dati da Firestore.

Importa dati da Firestore

Console

Per utilizzare la console per importare i dati da Firestore, segui questi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Vai alla pagina Datastore.

  3. Fai clic su Nuovo datastore.

  4. Nella pagina Origine, seleziona Firestore.

  5. Specifica l'ID progetto, l'ID database e l'ID raccolta dei dati che da importare.

  6. Fai clic su Continua.

  7. Scegli una regione per il tuo datastore.

  8. Inserisci un nome per il datastore.

  9. Fai clic su Crea.

  10. Per controllare lo stato dell'importazione, vai alla pagina Datastore e fai clic sul nome del datastore per visualizzarne i dettagli nella pagina Dati. Quando la colonna dello stato nella scheda Attività cambia da In corso su Importazione completata, l'importazione è completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere diverse minuti o diverse ore.

REST

Utilizzare la riga di comando per creare un datastore e importare i dati da Firestore, segui questi passaggi:

  1. Crea un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1alpha/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"],
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del progetto.
    • DATA_STORE_ID: l'ID del datastore. L'ID può Deve contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DISPLAY_NAME: il nome visualizzato del datastore. Questo messaggio potrebbe essere visualizzato nella console Google Cloud.
  2. Importa i dati da Firestore.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:import" \
      -d '{
        "firestoreSource": {
          "projectId": "FIRESTORE_PROJECT_ID",
          "databaseId": "DATABASE_ID",
          "collectionId": "COLLECTION_ID",
        },
        "reconciliationMode": "RECONCILIATION_MODE",
        "autoGenerateIds": "AUTO_GENERATE_IDS",
        "idField": "ID_FIELD",
      }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Vertex AI Search.
    • DATA_STORE_ID: l'ID del datastore. L'ID può Deve contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • FIRESTORE_PROJECT_ID: l'ID del tuo progetto Firestore.
    • DATABASE_ID: l'ID di Firestore per configurare un database.
    • COLLECTION_ID: l'ID di Firestore .
    • RECONCILIATION_MODE: facoltativo. I valori sono FULL e INCREMENTAL. Il valore predefinito è INCREMENTAL. Specifica INCREMENTAL provoca un aggiornamento incrementale dei dati da Firestore un datastore. Viene eseguita un'operazione di upsert, che aggiunge nuovi documenti sostituisce i documenti esistenti con documenti aggiornati con lo stesso ID. Se specifichi FULL, viene generato un rebase completo dei documenti nei tuoi dati . In altre parole, i documenti nuovi e aggiornati vengono aggiunti al tuo data store e quelli che non sono in Firestore vengono rimossi. La modalità FULL è utile se vuoi eliminare automaticamente i documenti che non ti servono più.
    • AUTO_GENERATE_IDS: facoltativo. Specifica se generano automaticamente gli ID documento. Se impostato su true, gli ID documento vengono generati sulla base di un hash del payload. Tieni presente che ha generato gli ID documento potrebbero non rimanere coerenti in più importazioni. Se generi automaticamente gli ID in più importazioni, Google consiglia vivamente di impostare reconciliationMode su FULL per mantenere ID documento coerenti.
    • ID_FIELD: facoltativo. Specifica quali campi sono ID documento.

Python

Per ulteriori informazioni, consulta API Python di Vertex AI Agent Builder documentazione di riferimento.

Per autenticarti in Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa documenti

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"
# firestore_project_id = "YOUR_FIRESTORE_PROJECT_ID"
# firestore_database_id = "YOUR_FIRESTORE_DATABASE_ID"
# firestore_collection_id = "YOUR_FIRESTORE_COLLECTION_ID"

#  For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.DocumentServiceClient(client_options=client_options)

# The full resource name of the search engine branch.
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
parent = client.branch_path(
    project=project_id,
    location=location,
    data_store=data_store_id,
    branch="default_branch",
)

request = discoveryengine.ImportDocumentsRequest(
    parent=parent,
    firestore_source=discoveryengine.FirestoreSource(
        project_id=firestore_project_id,
        database_id=firestore_database_id,
        collection_id=firestore_collection_id,
    ),
    # Options: `FULL`, `INCREMENTAL`
    reconciliation_mode=discoveryengine.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL,
)

# Make the request
operation = client.import_documents(request=request)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.ImportDocumentsMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo la configurazione dell'app e del datastore, consulta Generare risultati di ricerca.

Importa da Bigtable

Per importare dati da Bigtable, segui questi passaggi un datastore e importare i dati utilizzando l'API.

Configura l'accesso a Bigtable

Per concedere a Vertex AI Search l'accesso ai dati Bigtable in un progetto diverso:

  1. Sostituisci la seguente variabile PROJECT_NUMBER con la tua numero di progetto Vertex AI Search, quindi copia i contenuti di questo di blocco di codice. Questo è l'identificatore del tuo account di servizio Vertex AI Search:

    service-PROJECT_NUMBER@gcp-sa-discoveryengine.iam.gserviceaccount.com`
    
  2. Vai alla sezione IAM e Console di amministrazione.

    IAM e Amministratore

  3. Passa al tuo progetto Bigtable nella pagina IAM e amministrazione e fai clic su Concedi l'accesso.

  4. In Nuove entità, inserisci l'identificatore dell'account di servizio dell'istanza e seleziona il ruolo Bigtable > Lettore Bigtable.

  5. Fai clic su Salva.

  6. Torna al progetto Vertex AI Search.

Poi vai a Importare i dati da Bigtable.

Importa dati da Bigtable

REST

Utilizzare la riga di comando per creare un datastore e importare i dati da Bigtable, segui questi passaggi:

  1. Crea un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1alpha/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"],
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del progetto.
    • DATA_STORE_ID: l'ID del datastore. L'ID può Deve contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DISPLAY_NAME: il nome visualizzato del datastore. Questo potrebbe verranno visualizzate nella console Google Cloud.
  2. Importa i dati da Bigtable.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:import" \
      -d '{
        "bigtableSource ": {
          "projectId": "BIGTABLE_PROJECT_ID",
          "instanceId": "INSTANCE_ID",
          "tableId": "TABLE_ID",
          "bigtableOptions": {
            "keyFieldName": "KEY_FIELD_NAME",
            "families": {
              "key": "KEY",
              "value": {
                "fieldName": "FIELD_NAME",
                "encoding": "ENCODING",
                "type": "TYPE",
                "columns": [
                  {
                    "qualifier": "QUALIFIER",
                    "fieldName": "FIELD_NAME",
                    "encoding": "COLUMN_ENCODING",
                    "type": "COLUMN_VALUES_TYPE"
                  }
                ]
              }
             }
             ...
          }
        },
        "reconciliationMode": "RECONCILIATION_MODE",
        "autoGenerateIds": "AUTO_GENERATE_IDS",
        "idField": "ID_FIELD",
      }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID di Vertex AI Search progetto.
    • DATA_STORE_ID: l'ID del datastore. L'ID può contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • BIGTABLE_PROJECT_ID: l'ID del tuo progetto Bigtable.
    • INSTANCE_ID: l'ID della tua istanza Bigtable.
    • TABLE_ID: l'ID della tabella Bigtable.
    • KEY_FIELD_NAME: facoltativo ma consigliato. Il nome del campo da come valore chiave di riga dopo l'importazione in Vertex AI Search.
    • KEY: campo obbligatorio. Un valore di stringa per la chiave della famiglia di colonne.
    • ENCODING: facoltativo. La modalità di codifica dei valori quando il tipo non è STRING.Può essere sostituito per una colonna specifica elenca la colonna in columns e ne specifica una codifica.
    • COLUMN_TYPE: facoltativo. Il tipo di valori in questa colonna famiglia.
    • QUALIFIER: obbligatorio. Qualificatore della colonna.
    • FIELD_NAME: facoltativo, ma consigliato. Il nome del campo da utilizzare per questa colonna dopo l'importazione in Vertex AI Search.
    • COLUMN_ENCODING: facoltativo. La modalità di codifica dei valori per una colonna specifica quando il tipo non è STRING.
    • RECONCILIATION_MODE: facoltativo. I valori sono FULL e INCREMENTAL. Il valore predefinito è INCREMENTAL. La specifica di INCREMENTAL provoca un aggiornamento incrementale dei dati da Bigtable al tuo datastore. Viene eseguita un'operazione di upsert, che aggiunge nuovi documenti e sostituisce quelli esistenti con quelli aggiornati lo stesso ID. Se specifichi FULL, viene eseguita una rebase completa dei documenti nel tuo datastore. In altre parole, i documenti nuovi e aggiornati vengono aggiunti del datastore e documenti non presenti in Bigtable vengono rimossi dal datastore. La modalità FULL è utile se: quando vuoi eliminare automaticamente i documenti che non ti servono più.
    • AUTO_GENERATE_IDS: facoltativo. Specifica se generare automaticamente gli ID documento. Se impostato su true, gli ID documento vengono generati sulla base di un hash del payload. Tieni presente che gli ID documento generati potrebbero non rimanere coerenti in più importazioni. Se generi automaticamente gli ID in più importazioni, Google consiglia vivamente di impostare reconciliationMode su FULL per mantenere ID documento coerenti.

      Specifica autoGenerateIds solo quando bigquerySource.dataSchema è impostato su custom. In caso contrario, viene restituito un errore INVALID_ARGUMENT restituito. Se non specifichi autoGenerateIds o non lo imposti su false, devi specificare idField. In caso contrario, l'importazione dei documenti non andrà a buon fine.

    • ID_FIELD: facoltativo. Specifica quali campi sono ID documento.

Python

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python Vertex AI Agent Builder.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa documenti

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"
# bigtable_project_id = "YOUR_BIGTABLE_PROJECT_ID"
# bigtable_instance_id = "YOUR_BIGTABLE_INSTANCE_ID"
# bigtable_table_id = "YOUR_BIGTABLE_TABLE_ID"

#  For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.DocumentServiceClient(client_options=client_options)

# The full resource name of the search engine branch.
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
parent = client.branch_path(
    project=project_id,
    location=location,
    data_store=data_store_id,
    branch="default_branch",
)

bigtable_options = discoveryengine.BigtableOptions(
    families={
        "family_name_1": discoveryengine.BigtableOptions.BigtableColumnFamily(
            type_=discoveryengine.BigtableOptions.Type.STRING,
            encoding=discoveryengine.BigtableOptions.Encoding.TEXT,
            columns=[
                discoveryengine.BigtableOptions.BigtableColumn(
                    qualifier="qualifier_1".encode("utf-8"),
                    field_name="field_name_1",
                ),
            ],
        ),
        "family_name_2": discoveryengine.BigtableOptions.BigtableColumnFamily(
            type_=discoveryengine.BigtableOptions.Type.INTEGER,
            encoding=discoveryengine.BigtableOptions.Encoding.BINARY,
        ),
    }
)

request = discoveryengine.ImportDocumentsRequest(
    parent=parent,
    bigtable_source=discoveryengine.BigtableSource(
        project_id=bigtable_project_id,
        instance_id=bigtable_instance_id,
        table_id=bigtable_table_id,
        bigtable_options=bigtable_options,
    ),
    # Options: `FULL`, `INCREMENTAL`
    reconciliation_mode=discoveryengine.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL,
)

# Make the request
operation = client.import_documents(request=request)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.ImportDocumentsMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo la configurazione dell'app e del datastore, consulta Generare risultati di ricerca.

Importazione da AlloyDB per PostgreSQL

Per importare i dati da AlloyDB per PostgreSQL, segui questi passaggi per creare un datastore e importare i dati utilizzando la console Google Cloud o l'API.

Se i dati di AlloyDB per PostgreSQL si trovano nello stesso progetto del progetto Vertex AI Search, vai a Importare i dati da AlloyDB per PostgreSQL.

Se i dati di AlloyDB per PostgreSQL si trovano in un progetto diverso da quello di Vertex AI Search, vai a Configurare l'accesso ad AlloyDB per PostgreSQL.

Configurare l'accesso ad AlloyDB per PostgreSQL da un altro progetto

Per concedere a Vertex AI Search l'accesso ai dati AlloyDB per PostgreSQL, in un altro progetto, segui questi passaggi:

  1. Sostituisci la seguente variabile PROJECT_NUMBER con la tua di Vertex AI Search, quindi copia il contenuto di questo di blocco di codice. Questo è il tuo account di servizio Vertex AI Search identificatore:

    service-PROJECT_NUMBER@gcp-sa-discoveryengine.iam.gserviceaccount.com
    
  2. Passa al progetto Google Cloud in cui i tuoi dati AlloyDB per PostgreSQL risiede.

  3. Vai alla pagina IAM.

    IAM

  4. Fai clic su Concedi l'accesso.

  5. In Nuove entità, inserisci l'identificatore dell'account di servizio Vertex AI Search e seleziona il ruolo Cloud AlloyDB > Amministratore Cloud AlloyDB.

  6. Fai clic su Salva.

  7. Torna al progetto Vertex AI Search.

Poi, vai a Importare dati da AlloyDB per PostgreSQL.

Importa dati da AlloyDB per PostgreSQL

Console

Per utilizzare la console per importare i dati da AlloyDB per PostgreSQL, segui questi passaggi:

  1. Nella console Google Cloud, vai alla pagina Agent Builder.

    Agent Builder

  2. Nel menu di navigazione, fai clic su Datastore.

  3. Fai clic su Crea datastore.

  4. Nella pagina Origine, seleziona AlloyDB.

  5. Specifica l'ID progetto, l'ID località, l'ID cluster, l'ID database e l'ID tabella dei dati che prevedi di importare.

  6. Fai clic su Continua.

  7. Scegli una regione per il tuo datastore.

  8. Inserisci un nome per il datastore.

  9. Fai clic su Crea.

  10. Per controllare lo stato dell'importazione, vai alla pagina Datastore e fai clic sul nome del datastore per visualizzarne i dettagli nella pagina Dati. Quando la colonna dello stato nella scheda Attività cambia da In corso su Importazione completata, l'importazione è completata.

    A seconda delle dimensioni dei dati, l'importazione può richiedere diverse minuti o diverse ore.

REST

Per utilizzare la riga di comando per creare un data store e importare i dati da AlloyDB per PostgreSQL:

  1. Creare un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"],
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del progetto.
    • DATA_STORE_ID: l'ID del datastore. L'ID può Deve contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DISPLAY_NAME: il nome visualizzato del datastore. Questo messaggio potrebbe essere visualizzato nella console Google Cloud.
  2. Importa i dati da AlloyDB per PostgreSQL.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents:import" \
      -d '{
        "alloydbSource": {
          "projectId": "ALLOYDB_PROJECT_ID",
          "locationId": "LOCATION_ID",
          "clusterId": "CLUSTER_ID",
          "databaseId": "DATABASE_ID",
          "tableId": "TABLE_ID",
        },
        "reconciliationMode": "RECONCILIATION_MODE",
        "autoGenerateIds": "AUTO_GENERATE_IDS",
        "idField": "ID_FIELD",
      }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Vertex AI Search.
    • DATA_STORE_ID: l'ID del datastore. L'ID può Deve contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • ALLOYDB_PROJECT_ID: l'ID del tuo Progetto AlloyDB per PostgreSQL.
    • LOCATION_ID: l'ID della tua località AlloyDB per PostgreSQL.
    • CLUSTER_ID: l'ID di AlloyDB per PostgreSQL in un cluster Kubernetes.
    • DATABASE_ID: l'ID di AlloyDB per PostgreSQL per configurare un database.
    • TABLE_ID: l'ID della tabella AlloyDB per PostgreSQL.
    • RECONCILIATION_MODE: facoltativo. I valori sono FULL e INCREMENTAL. Il valore predefinito è INCREMENTAL. La specifica di INCREMENTAL provoca un aggiornamento incrementale dei dati da AlloyDB per PostgreSQL al tuo data store. Viene eseguita un'operazione di upsert, che aggiunge nuovi documenti e sostituisce quelli esistenti con documenti aggiornati con lo stesso ID. Se specifichi FULL, viene generato un rebase completo dei documenti nei tuoi dati . In altre parole, i documenti nuovi e aggiornati vengono aggiunti al tuo data store e quelli che non sono presenti in AlloyDB per PostgreSQL vengono rimossi dal tuo data store. La modalità FULL è utile se vuoi elimineranno automaticamente i documenti che non ti servono più.
    • AUTO_GENERATE_IDS: facoltativo. Specifica se generano automaticamente gli ID documento. Se impostato su true, gli ID documento vengono generati sulla base di un hash del payload. Tieni presente che ha generato gli ID documento potrebbero non rimanere coerenti in più importazioni. Se generi automaticamente gli ID in più importazioni, Google consiglia vivamente di impostare reconciliationMode su FULL per mantenere ID documento coerenti.
    • ID_FIELD: facoltativo. Specifica quali campi sono ID documento.

Python

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Python Vertex AI Agent Builder.

Per eseguire l'autenticazione su Vertex AI Agent Builder, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Crea un datastore


from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"


def create_data_store_sample(
    project_id: str,
    location: str,
    data_store_id: str,
) -> str:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.DataStoreServiceClient(client_options=client_options)

    # The full resource name of the collection
    # e.g. projects/{project}/locations/{location}/collections/default_collection
    parent = client.collection_path(
        project=project_id,
        location=location,
        collection="default_collection",
    )

    data_store = discoveryengine.DataStore(
        display_name="My Data Store",
        # Options: GENERIC, MEDIA, HEALTHCARE_FHIR
        industry_vertical=discoveryengine.IndustryVertical.GENERIC,
        # Options: SOLUTION_TYPE_RECOMMENDATION, SOLUTION_TYPE_SEARCH, SOLUTION_TYPE_CHAT, SOLUTION_TYPE_GENERATIVE_CHAT
        solution_types=[discoveryengine.SolutionType.SOLUTION_TYPE_SEARCH],
        # TODO(developer): Update content_config based on data store type.
        # Options: NO_CONTENT, CONTENT_REQUIRED, PUBLIC_WEBSITE
        content_config=discoveryengine.DataStore.ContentConfig.CONTENT_REQUIRED,
    )

    request = discoveryengine.CreateDataStoreRequest(
        parent=parent,
        data_store_id=data_store_id,
        data_store=data_store,
        # Optional: For Advanced Site Search Only
        # create_advanced_site_search=True,
    )

    # Make the request
    operation = client.create_data_store(request=request)

    print(f"Waiting for operation to complete: {operation.operation.name}")
    response = operation.result()

    # After the operation is complete,
    # get information from operation metadata
    metadata = discoveryengine.CreateDataStoreMetadata(operation.metadata)

    # Handle the response
    print(response)
    print(metadata)

    return operation.operation.name

Importa documenti

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION" # Values: "global"
# data_store_id = "YOUR_DATA_STORE_ID"
# alloy_db_project_id = "YOUR_ALLOY_DB_PROJECT_ID"
# alloy_db_location_id = "YOUR_ALLOY_DB_LOCATION_ID"
# alloy_db_cluster_id = "YOUR_ALLOY_DB_CLUSTER_ID"
# alloy_db_database_id = "YOUR_ALLOY_DB_DATABASE_ID"
# alloy_db_table_id = "YOUR_ALLOY_DB_TABLE_ID"

# For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
client_options = (
    ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
    if location != "global"
    else None
)

# Create a client
client = discoveryengine.DocumentServiceClient(client_options=client_options)

# The full resource name of the search engine branch.
# e.g. projects/{project}/locations/{location}/dataStores/{data_store_id}/branches/{branch}
parent = client.branch_path(
    project=project_id,
    location=location,
    data_store=data_store_id,
    branch="default_branch",
)

request = discoveryengine.ImportDocumentsRequest(
    parent=parent,
    alloy_db_source=discoveryengine.AlloyDbSource(
        project_id=alloy_db_project_id,
        location_id=alloy_db_location_id,
        cluster_id=alloy_db_cluster_id,
        database_id=alloy_db_database_id,
        table_id=alloy_db_table_id,
    ),
    # Options: `FULL`, `INCREMENTAL`
    reconciliation_mode=discoveryengine.ImportDocumentsRequest.ReconciliationMode.INCREMENTAL,
)

# Make the request
operation = client.import_documents(request=request)

print(f"Waiting for operation to complete: {operation.operation.name}")
response = operation.result()

# After the operation is complete,
# get information from operation metadata
metadata = discoveryengine.ImportDocumentsMetadata(operation.metadata)

# Handle the response
print(response)
print(metadata)

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi descritti in Creare un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo che l'app e il datastore sono per l'impostazione, consulta Visualizza i risultati di ricerca.

Caricare dati JSON strutturati con l'API

Per caricare direttamente un documento o un oggetto JSON utilizzando l'API, segui questi passaggi.

Prima di importare i dati, Prepara i dati per l'importazione.

REST

Per utilizzare la riga di comando per creare un data store e importare dati JSON strutturati, segui questi passaggi.

  1. Creare un datastore.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -H "X-Goog-User-Project: PROJECT_ID" \
    "https://discoveryengine.googleapis.com/v1alpha/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores?dataStoreId=DATA_STORE_ID" \
    -d '{
      "displayName": "DATA_STORE_DISPLAY_NAME",
      "industryVertical": "GENERIC",
      "solutionTypes": ["SOLUTION_TYPE_SEARCH"]
    }'
    

    Sostituisci quanto segue:

    • PROJECT_ID: l'ID del tuo progetto Google Cloud.
    • DATA_STORE_ID: l'ID del datastore di Vertex AI Search che vuoi creare. Questo ID può contenere solo lettere minuscole, cifre, trattini bassi e trattini.
    • DATA_STORE_DISPLAY_NAME: il nome visualizzato del datastore di ricerca Vertex AI che vuoi creare.
  2. Importa i dati strutturati.

    Esistono alcuni approcci che puoi utilizzare per caricare i dati, tra cui:

    • Carica un documento JSON.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents?documentId=DOCUMENT_ID" \
      -d '{
        "jsonData": "JSON_DOCUMENT_STRING"
      }'
      

      Sostituisci quanto segue:

      • DOCUMENT_ID: un ID univoco per il documento. Questo ID può avere una lunghezza massima di 63 caratteri e contenere solo lettere minuscole. lettere, numeri, trattini bassi e trattini.
      • JSON_DOCUMENT_STRING: il documento JSON come singola stringa. Deve essere conforme allo schema JSON fornito nel passaggio precedente, ad esempio:

        { \"title\": \"test title\", \"categories\": [\"cat_1\", \"cat_2\"], \"uri\": \"test uri\"}
        
    • Caricare un oggetto JSON.

      curl -X POST \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents?documentId=DOCUMENT_ID" \
      -d '{
        "structData": JSON_DOCUMENT_OBJECT
      }'
      

      Sostituisci JSON_DOCUMENT_OBJECT con il documento JSON come oggetto JSON. Deve essere conforme allo schema JSON che hai fornito nel passaggio precedente, ad esempio:

      ```json
      {
        "title": "test title",
        "categories": [
          "cat_1",
          "cat_2"
        ],
        "uri": "test uri"
      }
      ```
      
    • Esegui l'aggiornamento con un documento JSON.

      curl -X PATCH \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents/DOCUMENT_ID" \
      -d '{
        "jsonData": "JSON_DOCUMENT_STRING"
      }'
      
    • Esegui l'aggiornamento con un oggetto JSON.

      curl -X PATCH \
      -H "Authorization: Bearer $(gcloud auth print-access-token)" \
      -H "Content-Type: application/json" \
      "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/branches/0/documents/DOCUMENT_ID" \
      -d '{
        "structData": JSON_DOCUMENT_OBJECT
      }'
      

Passaggi successivi

  • Per collegare il datastore a un'app, crea un'app e seleziona il datastore seguendo i passaggi Crea un'app di ricerca.

  • Per visualizzare l'anteprima dell'aspetto dei risultati di ricerca dopo che l'app e il datastore sono per l'impostazione, consulta Visualizza i risultati di ricerca.

Risolvere i problemi di importazione dati

In caso di problemi con importazione dati, consulta questi suggerimenti:

  • Se utilizzi chiavi di crittografia gestite dal cliente e l'importazione dei dati non riesce (con messaggio di errore The caller does not have permission), assicurati quindi che il ruolo IAM Autore crittografia/decrittografia CryptoKey (roles/cloudkms.cryptoKeyEncrypterDecrypter) sulla chiave è stato concesso l'agente di servizio Cloud Storage. Per saperne di più, consulta Prima di iniziare in "Chiavi di crittografia gestite dal cliente".

  • Se utilizzi l'indicizzazione avanzata dei siti web e l'Utilizzo di documenti per il un datastore è molto più basso del previsto, poi esamina i pattern URL che specificati per l'indicizzazione e assicurati che i pattern URL specificati coprano pagine che vuoi indicizzare ed espandere, se necessario. Ad esempio, se hai utilizzato *.en.example.com/*, potresti dover aggiungere *.example.com/* siti che vuoi indicizzare.

Crea un datastore utilizzando Terraform

Puoi utilizzare Terraform per creare un data store vuoto. Dopo aver creato il data store vuoto, puoi importare i dati utilizzando i comandi della console o dell'API Google Cloud.

Per scoprire come applicare o rimuovere una configurazione Terraform, consulta Comandi Terraform di base.

Per creare un data store vuoto utilizzando Terraform, consulta google_discovery_engine_data_store.