En esta página, se presenta la búsqueda con respuestas y preguntas adicionales para Vertex AI Search y se muestra cómo implementarla en apps de búsqueda genéricas con llamadas a métodos.
Nota: Las funciones de respuesta y preguntas adicionales no se pueden aplicar a los almacenes de datos de atención médica ni multimedia.
La búsqueda con respuestas y preguntas adicionales se basa en el método de respuesta. El método de respuesta reemplaza las funciones de resumen del método search anterior y todas las funciones del método converse obsoleto.
El método de respuesta también tiene algunas funciones adicionales importantes, como la capacidad de controlar consultas complejas.
Término clave: En esta página, el término respuesta hace referencia a una respuesta generada por IA que se basa en los resultados de la búsqueda de una consulta. Es esencialmente lo mismo que el resumen , que puede generar el método de búsqueda.
Funciones del método de respuesta
Las características clave del método de respuesta son las siguientes:
La capacidad de generar respuestas a consultas complejas. Por ejemplo, el método de respuesta puede desglosar las consultas compuestas, como la siguiente, en varias consultas más pequeñas para mostrar mejores resultados que se usan para generar mejores respuestas:
"¿Cuáles son los ingresos respectivos de Google Cloud y Google Ads en 2024?"
"¿Cuántos años después de su fundación, Google alcanzó los 1,000 millones de dólares de ingresos?"
La capacidad de combinar la búsqueda y la generación de respuestas en una conversación de varios turnos llamando al método de respuesta en cada turno
La capacidad de vincularse con el método de búsqueda para reducir la latencia de la búsqueda Puedes llamar al método de búsqueda y al método de respuesta por separado, y renderizar los resultados de la búsqueda y las respuestas en diferentes iframes en diferentes momentos. Esto significa que puedes mostrarles a los usuarios los resultados de la búsqueda (los 10 vínculos azules) en milisegundos. No es necesario que esperes a que se generen las respuestas para poder mostrar los resultados de la búsqueda.
Las características de las respuestas y las preguntas adicionales se pueden dividir en tres fases de la consulta, la búsqueda y la respuesta:
Cuándo usar la respuesta y cuándo usar la búsqueda
Vertex AI Search tiene dos métodos que se usan para consultar apps. Tienen funciones diferentes, pero que se superponen.
Usa el método answer en los siguientes casos:
Quieres una respuesta (o un resumen) generada por IA de los resultados de la búsqueda.
Quieres realizar búsquedas de varios turnos, es decir, búsquedas que conservan el contexto para permitir
preguntas adicionales.
Usa el método search en los siguientes casos:
Solo necesitas los resultados de la búsqueda, no una respuesta generada.
Quieres que se muestren más de diez resultados de la búsqueda ("vínculos azules").
Tienes alguna de las siguientes condiciones:
Datos de atención médica o medios
Tus propias incorporaciones
Controles de sinónimos o redireccionamientos
Facetas
Códigos de país del usuario
Usa los métodos de respuesta y de búsqueda en conjunto en los siguientes casos:
Quieres mostrar más de diez resultados de la búsqueda y quieres una respuesta generada.
Tienes problemas de latencia y deseas mostrar y mostrar los resultados de la búsqueda rápidamente antes de que se muestre la respuesta generada.
Funciones de la fase de consulta
La función de respuestas y preguntas adicionales admite el procesamiento de consultas de lenguaje natural.
En esta sección, se describen y se ilustran las diferentes opciones para reformular y clasificar las consultas.
Reformulación de consultas
La reformulación de consultas está activada de forma predeterminada. Esta función elige la mejor manera de reformular las consultas automáticamente para mejorar los resultados de la búsqueda. Esta función también puede manejar consultas que no requieren reformulación.
Divide las consultas complejas en varias consultas y realiza subconsultas síncronas.
Por ejemplo, una consulta compleja se divide en cuatro consultas más pequeñas y simples.
Entrada del usuario
Subconsultas creadas a partir de la consulta compleja
¿Qué trabajos y aficiones tienen en común Andie Ram y Arnaud Clément?
Ocupación de Andie Ram
Ocupación de Arnaud Clément
Pasatiempo de Andie Ram
Pasatiempo de Arnaud Clément
Sintetiza las consultas de varios turnos para que las preguntas adicionales sean conscientes del contexto y tengan estado.
Por ejemplo, las consultas sintetizadas a partir de la entrada del usuario en cada turno podrían ser así:
Entrada del usuario
Consulta sintetizada
Turno 1: laptops para la escuela
laptops para instituciones educativas
Turn 2: not mac
laptops para la escuela, no Mac
Turno 3: pantalla más grande y también necesito un teclado y un mouse inalámbricos
laptops con pantallas más grandes para la escuela, no Mac, con teclado y mouse inalámbricos
Vuelta 4: y una mochila para ella
laptops de pantalla más grande para la escuela, no Mac, con teclado y mouse inalámbricos, y una mochila para ellas
Simplifica las consultas largas para mejorar la recuperación.
Por ejemplo, una consulta larga se reduce a una simple.
Entrada del usuario
Búsqueda simplificada
Estoy tratando de averiguar por qué el botón “Agregar al carrito” de nuestro sitio web no funciona correctamente. Al parecer, cuando un usuario hace clic en el botón, el artículo no se agrega al carrito y recibe un mensaje de error. Revisé el código y parece ser correcto, así que no sé cuál podría ser el problema. ¿Puedes ayudarme a solucionar este problema?
El botón "Agregar al carrito" no funciona en el sitio web.
Realiza un razonamiento de varios pasos
Términos clave: Los pasos (también conocidos como saltos ) se usan para responder preguntas complejas. La pregunta se desglosa en
varios pasos de recuperación y de inferencia de información.
El razonamiento de varios pasos se basa en el paradigma ReAct (razonar + actuar), que permite a los LLM resolver tareas complejas con razonamiento de lenguaje natural.
De forma predeterminada, la cantidad máxima de pasos es cinco.
Por ejemplo:
Entrada del usuario
Dos pasos para generar la respuesta
¿Cuántos años después de su fundación, Google alcanzó los 1,000 millones de dólares en ingresos?
Paso 1:
[Pensamiento]: Necesito saber cuándo se fundó Google para poder consultar sus ingresos desde entonces.
[Act] Búsqueda: ¿Cuándo se fundó Google? [Observa los resultados de la búsqueda]: “1998”
Paso 2:
[Pensamiento]: Ahora necesito buscar los ingresos anuales de Google desde 1998 y averiguar cuándo superaron los 1, 000 millones por primera vez.
[Act] Búsqueda: Ingresos de Google desde 1998
[Observa los resultados de la búsqueda] Ingresos de Google en 1998, ingresos de Google en 1999….
[Respuesta]: Google alcanzó más de USD 1,000 millones de
ingresos en 2003 [1], 5 años después de su fundación en 1998[2].
Clasificación de consultas
Las opciones de clasificación de consultas son para identificar consultas adversas y consultas que no buscan respuestas. De forma predeterminada, las opciones de clasificación de consultas están desactivadas.
Para obtener más información sobre las consultas maliciosas y que no buscan respuestas, consulta Cómo ignorar las consultas maliciosas y Cómo ignorar las consultas que no buscan resúmenes .
Funciones de la fase de búsqueda
Para la búsqueda, el método de respuesta tiene las mismas opciones que el método de búsqueda. Por ejemplo:
Funciones de la fase de respuesta
Durante la fase de respuesta, cuando se generan respuestas a partir de los resultados de la búsqueda, puedes habilitar las mismas funciones que en el método de búsqueda. Por ejemplo:
Las siguientes son funciones adicionales de la fase de respuesta que no están disponibles en el método de búsqueda:
Antes de comenzar
Según el tipo de app que tengas, completa los siguientes requisitos:
Si tienes una app de búsqueda estructurada o no estructurada, asegúrate de que la siguiente
opción esté activada: Funciones avanzadas de LLM
Si tienes una app de búsqueda de sitios web, asegúrate de que los siguientes elementos estén activados:
Si tienes una app de búsqueda combinada (es decir, una app que está conectada a más de un almacén de datos), comunícate con tu equipo de Cuentas de Google y solicita que te agreguen a la lista de entidades permitidas de la API de respuestas con búsqueda combinada.
Búsqueda y respuesta (básica)
En el siguiente comando, se muestra cómo llamar al método answer y mostrar una respuesta generada y una lista de resultados de la búsqueda, con vínculos a las fuentes.
Este comando solo muestra la entrada obligatoria. Las opciones se dejan con sus valores predeterminados.
REST
Para buscar y obtener resultados con una respuesta generada, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?".
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{"query": { "text": "Which database is faster, bigquery or spanner?"}}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "The provided sources do not directly compare the speed of BigQuery and Spanner. However, they do highlight the performance capabilities of each database. BigQuery is described as having strong query performance, particularly for short and complex queries. It also offers a serverless architecture that provides consistent performance regardless of query complexity. Spanner is described as having high performance at virtually unlimited scale, with single-digit millisecond latency for strongly-consistent reads and writes. It also offers a five-nines availability SLA. Ultimately, the best database for a particular use case will depend on the specific requirements of the application. \n",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": " What is the performance of BigQuery? "
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/9ab3ef91bcfde1fcd091efe9df7c699c",
"uri": "https://cloud.google.com/bigquery/docs/best-practices-performance-overview",
"title": "Introduction to optimizing query performance | BigQuery | Google Cloud",
"snippetInfo": [
{
"snippet": "After a query begins execution, \u003cb\u003eBigQuery\u003c/b\u003e calculates how many slots each query stage uses based on the stage size and complexity and the number of slots ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/4e545c5cb69b06b251265114d9099cb4",
"uri": "https://cloud.google.com/bigquery/docs/query-insights",
"title": "Get query performance insights | BigQuery | Google Cloud",
"snippetInfo": [
{
"snippet": "This document describes how to use the query execution graph to diagnose query \u003cb\u003eperformance\u003c/b\u003e issues, and to see query \u003cb\u003eperformance\u003c/b\u003e insights. \u003cb\u003eBigQuery\u003c/b\u003e offers ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d34672d877eefe596f9c7d1a3d7076b1",
"uri": "https://cloud.google.com/bigquery/docs/best-practices-performance-compute",
"title": "Optimize query computation | BigQuery | Google Cloud",
"snippetInfo": [
{
"snippet": "After addressing the query \u003cb\u003eperformance\u003c/b\u003e insights, you can further optimize your query by performing the following tasks: Reduce data that is to be processed ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/75ce2f05833683e60ddc21a11ce0466f",
"uri": "https://cloud.google.com/blog/products/data-analytics/troubleshoot-and-optimize-your-bigquery-analytics-queries-with-query-execution-graph/",
"title": "Troubleshoot and optimize your BigQuery analytics queries with query execution graph | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "Since query \u003cb\u003eperformance\u003c/b\u003e is multi-faceted, \u003cb\u003eperformance\u003c/b\u003e insights might only provide a partial picture of the overall query \u003cb\u003eperformance\u003c/b\u003e. Execution graph. When ...",
"snippetStatus": "SUCCESS"
}
]
}
]
}
},
{
"searchAction": {
"query": " What is the performance of Spanner? "
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f3d036b60379873acf7c73081c5e5b5c",
"uri": "https://cloud.google.com/spanner/docs/performance",
"title": "Performance overview | Spanner | Google Cloud",
"snippetInfo": [
{
"snippet": "These \u003cb\u003eperformance\u003c/b\u003e improvements should result in higher throughput and better latency in \u003cb\u003eSpanner\u003c/b\u003e nodes in both regional and multi-region instance configurations.",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/422496248ade354c73b4c906b8eb9b5f",
"uri": "https://cloud.google.com/blog/products/databases/announcing-cloud-spanner-price-performance-updates",
"title": "Announcing Cloud Spanner price-performance updates | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "Alongside lower costs, Cloud \u003cb\u003eSpanner\u003c/b\u003e provides single-digit ms latencies and strong consistency across multiple availability zones in the same region.",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/53c2a1a6990480ba4aa05cc6b4404562",
"uri": "https://cloud.google.com/blog/topics/developers-practitioners/understanding-cloud-spanner-performance-metrics-scale-key-visualizer",
"title": "Understanding Cloud Spanner performance metrics at scale with Key Visualizer | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "Designed for \u003cb\u003eperformance\u003c/b\u003e tuning and instance sizing, you can use Key Visualizer today in the web-based Cloud Console for all \u003cb\u003eSpanner\u003c/b\u003e databases at no additional ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/a6501ecd5d6391e3ade49097bab0ad3a",
"uri": "https://cloud.google.com/blog/products/databases/a-technical-overview-of-cloud-spanners-query-optimizer",
"title": "A technical overview of Cloud Spanner's query optimizer | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "... performance. Typically, a join will ... Google is continuously improving out-of-the-box \u003cb\u003eperformance of Spanner\u003c/b\u003e and reducing the need for manual tuning.",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
]
},
"answerQueryToken": "NMwKDAj1_d62BhC72_X_AhIkNjZkN2I4YWEtMDAwMC0yYTdiLWIxMmMtMDg5ZTA4MjhlNzY0"
}
En este ejemplo, la consulta se descompone en partes: "¿Cuál es el rendimiento de Spanner?" y "¿Cuál es el rendimiento de BigQuery?".
Comandos de la fase de consulta
En esta sección, se muestra cómo especificar opciones para la fase de consulta de la llamada de método answer .
Búsqueda y respuesta (reformulación inhabilitada)
En el siguiente comando, se muestra cómo llamar al método answer y mostrar una respuesta generada y una lista de resultados de la búsqueda. La respuesta podría ser diferente de la anterior porque la opción para reformular está inhabilitada.
REST
Para buscar y obtener resultados con una respuesta generada sin aplicar la reformulación de la consulta, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"queryUnderstandingSpec": {
"queryRephraserSpec": {
"disable": true
}
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?".
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{
"query": { "text": "Which database is faster, bigquery or spanner?"},
"queryUnderstandingSpec": { "queryRephraserSpec": { "disable": true } }
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "The sources provided do not directly compare the speed of BigQuery and Spanner. They do mention that Spanner is optimized for transactional workloads and BigQuery is optimized for analytical workloads. Spanner is a fully managed relational database that provides seamless replication across regions in Google Cloud. BigQuery is a serverless, highly scalable, and cost-effective multi-cloud data warehouse. Spanner is designed to scale horizontally across multiple regions and continents. BigQuery is designed for business agility. \n",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "Which database is faster, bigquery or spanner? "
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/ecc0e7547253f4ca3ff3328ce89995af",
"uri": "https://cloud.google.com/blog/topics/developers-practitioners/how-spanner-and-bigquery-work-together-handle-transactional-and-analytical-workloads",
"title": "How Spanner and BigQuery work together to handle transactional and analytical workloads | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "A federated \u003cb\u003equery\u003c/b\u003e might not be as \u003cb\u003efast\u003c/b\u003e as querying local \u003cb\u003eBigQuery tables\u003c/b\u003e. There may be higher latency because of the small wait time for the source \u003cb\u003edatabase\u003c/b\u003e to ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d7e238f73608a860e00b752ef80e2941",
"uri": "https://cloud.google.com/blog/products/databases/cloud-spanner-gets-stronger-with-bigquery-federated-queries",
"title": "Cloud Spanner gets stronger with BigQuery-federated queries | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "... \u003cb\u003equick\u003c/b\u003e lookup on \u003cb\u003edata\u003c/b\u003e that's in \u003cb\u003eSpanner\u003c/b\u003e -- you can ... Set up an external \u003cb\u003edata\u003c/b\u003e source for the \u003cb\u003eSpanner\u003c/b\u003e shopping \u003cb\u003edatabase\u003c/b\u003e in \u003cb\u003eBigQuery\u003c/b\u003e. ... The \u003cb\u003equery\u003c/b\u003e is executed in ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f3d036b60379873acf7c73081c5e5b5c",
"uri": "https://cloud.google.com/spanner/docs/performance",
"title": "Performance overview | Spanner | Google Cloud",
"snippetInfo": [
{
"snippet": "The information on this page applies to both GoogleSQL and PostgreSQL \u003cb\u003edatabases\u003c/b\u003e. Note: We are in the process of rolling out \u003cb\u003eperformance\u003c/b\u003e and storage changes that ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/47b09cb5ad5e3ab3b1eb93d99ecb0896",
"uri": "https://cloud.google.com/blog/products/databases/rewe-uses-cloud-spanner-to-optimize-for-speed-and-performance",
"title": "REWE uses Cloud Spanner to optimize for speed and performance | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "As a fully managed relational \u003cb\u003edatabase\u003c/b\u003e, \u003cb\u003eSpanner\u003c/b\u003e provides unlimited scale, strong consistency, and up to 99.999% availability. By choosing this approach to ...",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
]
},
"answerQueryToken": "M8gKCwjp_t62BhC7wOFMEiQ2NmQ3YjhhZS0wMDAwLTJhN2ItYjEyYy0wODllMDgyOGU3NjQ"
}
Búsqueda y respuesta (especifica los pasos máximos)
En el siguiente comando, se muestra cómo llamar al método answer y mostrar una respuesta generada y una lista de resultados de la búsqueda. La respuesta es diferente de las anteriores porque aumentó la cantidad de pasos para reformular.
REST
Para buscar y obtener resultados con una respuesta generada que permita hasta cinco pasos de reformulación, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"queryUnderstandingSpec": {
"queryRephraserSpec": {
"maxRephraseSteps": MAX_REPHRASE
}
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?".
MAX_REPHRASE
: Es la cantidad máxima de pasos para reformular. El valor más alto permitido es 5
.
Si no se establece o se establece en menos de 1
, el valor es el predeterminado, 1
.
Comando de ejemplo
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{
"query": { "text": "How much longer does it take to train a recommendations model than a search model"},
"queryUnderstandingSpec": {
"queryRephraserSpec": {
"maxRephraseSteps": 5
}
}
}'
Cómo buscar y responder con la clasificación de consultas
En el siguiente comando, se muestra cómo llamar al método answer para preguntar si una consulta es adversaria, no busca una respuesta o ninguna de las anteriores.
La respuesta incluye el tipo de clasificación de la consulta, pero la respuesta en sí no se ve afectada por la clasificación.
Si quieres cambiar el comportamiento de la respuesta según el tipo de consulta, puedes
hacerlo en la fase de respuesta. Consulta Cómo ignorar búsquedas adversas y Cómo ignorar búsquedas de búsqueda de no resumen .
REST
Para determinar si una consulta es adversaria o no busca una respuesta, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"queryUnderstandingSpec": {
"queryClassificationSpec": {
"types": ["QUERY_CLASSIFICATION_TYPE "]
}
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda. Por ejemplo, "hola".
QUERY_CLASSIFICATION_TYPE
: Los tipos de consulta que deseas identificar: ADVERSARIAL_QUERY
, NON_ANSWER_SEEKING_QUERY
o ambos.
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{
"query": {
"text": "Hello!"},
"queryUnderstandingSpec": {
"queryClassificationSpec": {
"types": ["ADVERSARIAL_QUERY", "NON_ANSWER_SEEKING_QUERY"]
}
}
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "A user reported that their Google Voice account was randomly sending \"Hello!\" replies to incoming texts. The user was frustrated because they did not want to send these replies and found the behavior random. The user was unable to find any linked accounts, Google extensions, or other settings that could be causing the issue. The user confirmed that Google Voice does not have auto-reply functions. The user was seeking help to stop the automatic replies. \n",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "Hello!"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/69e92e5b1de5b1e583fbe95f94dd4cbf",
"uri": "https://support.google.com/voice/thread/152245405/google-voice-is-randomly-automatically-sending-hello-replies-to-incoming-texts?hl=en",
"title": "Google voice is randomly/automatically sending \"Hello!\" replies to incoming texts",
"snippetInfo": [
{
"snippet": "There IS a new "Smart reply" feature on the Android or iOS client apps, but you'd have to a) receive a SMS/MMS, b) open it up, c) look at the three suggested ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/44fb313bcc09877e7239f3810ddb132b",
"uri": "https://support.google.com/mail/thread/58174131/gmail-sends-random-email-saying-hello-to-my-emails-without-me-touching-it?hl=en",
"title": "Gmail sends random email saying \"Hello!!\" to my emails without me touching it",
"snippetInfo": [
{
"snippet": "Gmail sends random email saying "\u003cb\u003eHello\u003c/b\u003e!!" to my emails without me touching it. Whenever I email somebody and they reply, a random email from my Gmail is sent to ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/16d65e2af7fa854d1a00995525646dc3",
"uri": "https://support.google.com/voice/thread/112990484/google-voice-sending-hello-in-response-to-text-messages?hl=en",
"title": "Google Voice sending \"Hello,\" in response to text messages",
"snippetInfo": [
{
"snippet": "When I receive text messages, a reply is instantly sent out reading "\u003cb\u003eHello\u003c/b\u003e," and I cannot figure out how this is happening. I have no linked accounts, ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/a828eb8f442f1dfbdda06dbeb52841b0",
"uri": "https://support.google.com/a/thread/161821861/hello-hello-the-lost-phone?hl=en",
"title": "Hello.Hello the lost phone - Google Workspace Admin Community",
"snippetInfo": [
{
"snippet": "\u003cb\u003eHello\u003c/b\u003e the lost phone. My wife lost her phone but she cannot remember her emails pasward to help track .",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
],
"queryUnderstandingInfo": {
"queryClassificationInfo": [
{
"type": "ADVERSARIAL_QUERY"
},
{
"type": "NON_ANSWER_SEEKING_QUERY",
"positive": true
}
]
}
},
"answerQueryToken": "NMwKDAjVloK3BhCdt8u9AhIkNjZkYmFhNWItMDAwMC0yZTBkLTg0ZDAtMDg5ZTA4MmRjYjg0"
}
En este ejemplo, la búsqueda "hola" no es adversaria, pero se clasifica como no orientada a la respuesta.
Comandos de la fase de búsqueda: Busca y responde con opciones de resultados de la búsqueda
En esta sección, se muestra cómo especificar opciones para la parte de la fase de búsqueda de la llamada de método answer , como establecer la cantidad máxima de documentos que se muestran, la mejora y el filtrado, y cómo obtener una respuesta cuando proporcionas tus propios resultados de la búsqueda.
En el siguiente comando, se muestra cómo llamar al método answer y especificar varias opciones para cómo se muestra el resultado de la búsqueda. (Los resultados de la búsqueda son independientes de la respuesta).
REST
Para configurar varias opciones relacionadas con qué resultados de la búsqueda se muestran y cómo, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"searchSpec": {
"searchParams": {
"maxReturnResults": MAX_RETURN_RESULTS ,
"filter": "FILTER ",
"boostSpec": BOOST_SPEC ,
"orderBy": "ORDER_BY ",
"searchResultMode": SEARCH_RESULT_MODE
}
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda. Por ejemplo, "¿Cómo comparar las bases de datos de BigQuery y Spanner?"
MAX_RETURN_RESULTS
: Es la cantidad de resultados de la búsqueda que se mostrarán. El valor predeterminado es 10
. El valor máximo también es 10
.
FILTER
: El filtro especifica qué documentos se consultan. Si los metadatos de un documento cumplen con la especificación del filtro, se consultará el documento. Para obtener más información, incluida la sintaxis de filtros, consulta Filtra la búsqueda genérica de datos estructurados o no estructurados .
BOOST_SPEC
: La especificación de aumento te permite mejorar ciertos documentos en los resultados de la búsqueda, lo que puede afectar la respuesta.
Para obtener más información, incluida la sintaxis de la especificación de aumento, consulta Cómo aumentar los resultados de la búsqueda .
ORDER_BY
: El orden en el que se muestran los documentos. Los documentos se pueden ordenar por un campo en un objeto Document . La expresión orderBy
distingue mayúsculas de minúsculas.
Si este campo no se puede reconocer, se muestra un INVALID_ARGUMENT
.
SEARCH_RESULT_MODE
: Especifica el modo de resultado de la búsqueda: DOCUMENTS
o CHUNKS
. Para obtener más información, consulta Cómo analizar y dividir documentos y ContentSearchSpec .
Este campo solo está disponible en la versión v1alpha de la API.
Ejemplo de comando y resultado
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{
"query": {
"text": "Does spanner database have an API?"},
"searchSpec": {
"searchParams": { "maxReturnResults": 3 }
}
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "Spanner database has an API that provides programmatic access to the database. The API is available through client libraries, RPC, and REST. The client libraries allow you to interact with Spanner in your preferred language. The RPC API and REST API provide programmatic access to Spanner. The Cloud Spanner API is a managed, mission-critical, globally consistent and scalable relational database service. \n",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "Does spanner database have an API?"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d135b46c4a44d0cc6b652538c1887f4d",
"uri": "https://cloud.google.com/spanner/docs/apis",
"title": "APIs & reference | Spanner | Google Cloud",
"snippetInfo": [
{
"snippet": "The client libraries, the RPC \u003cb\u003eAPI\u003c/b\u003e, and the REST \u003cb\u003eAPI\u003c/b\u003e provide programmatic access to \u003cb\u003eSpanner\u003c/b\u003e. \u003cb\u003eSpanner\u003c/b\u003e client libraries. \u003cb\u003eGet\u003c/b\u003e started with \u003cb\u003eSpanner\u003c/b\u003e in your language ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/7a744d43e61ccd33539de74d5c1f6313",
"uri": "https://cloud.google.com/spanner/docs/reference/rest",
"title": "Cloud Spanner API",
"snippetInfo": [
{
"snippet": "Returns permissions that the caller \u003cb\u003ehas\u003c/b\u003e on the specified \u003cb\u003edatabase\u003c/b\u003e or backup resource. updateDdl, PATCH /v1/{\u003cb\u003edatabase\u003c/b\u003e=projects/*/instances/*/\u003cb\u003edatabases\u003c/b\u003e/*}/ddl",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/70834ebf4b72b6dc69e06c44ee80f90b",
"uri": "https://cloud.google.com/spanner/docs/reference/rpc",
"title": "Cloud Spanner API",
"snippetInfo": [
{
"snippet": "ChangeQuorum \u003cb\u003eis\u003c/b\u003e strictly restricted to \u003cb\u003edatabases\u003c/b\u003e ... Returns the schema of a Cloud \u003cb\u003eSpanner database\u003c/b\u003e ... Returns permissions that the caller \u003cb\u003ehas\u003c/b\u003e on the specified ...",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
]
},
"answerQueryToken": "NMwKDAj2l4K3BhCqiv66ARIkNjZkYmFhNmMtMDAwMC0yZTBkLTg0ZDAtMDg5ZTA4MmRjYjg0"
}
En este ejemplo, la cantidad de documentos que se muestran se limita a tres.
Comandos de la fase de respuesta
En esta sección, se muestra cómo especificar opciones específicas de la respuesta para la llamada de método answer .
Ignora las consultas adversas y las que no buscan respuestas
En el siguiente comando, se muestra cómo evitar responder consultas adversas y consultas que no buscan respuestas cuando se llama al método answer .
REST
Para omitir las consultas que son hostiles o no buscan una respuesta, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"answerGenerationSpec": {
"ignoreAdversarialQuery": true,
"ignoreNonAnswerSeekingQuery": true
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{
"query": { "text": "Hello"},
"answerGenerationSpec": {
"ignoreAdversarialQuery": true ,
"ignoreNonAnswerSeekingQuery": true }
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "A summary could not be generated for your search query. Here are some search results. ",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "Hello"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/69e92e5b1de5b1e583fbe95f94dd4cbf",
"uri": "https://support.google.com/voice/thread/152245405/google-voice-is-randomly-automatically-sending-hello-replies-to-incoming-texts?hl=en",
"title": "Google voice is randomly/automatically sending \"Hello!\" replies to incoming texts",
"snippetInfo": [
{
"snippet": "There IS a new "Smart reply" feature on the Android or iOS client apps, but you'd have to a) receive a SMS/MMS, b) open it up, c) look at the three suggested ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/16d65e2af7fa854d1a00995525646dc3",
"uri": "https://support.google.com/voice/thread/112990484/google-voice-sending-hello-in-response-to-text-messages?hl=en",
"title": "Google Voice sending \"Hello,\" in response to text messages",
"snippetInfo": [
{
"snippet": "When I receive text messages, a reply is instantly sent out reading "\u003cb\u003eHello\u003c/b\u003e," and I cannot figure out how this is happening. I have no linked accounts, ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/b3bdde4957f588a1458c533269626d09",
"uri": "https://support.google.com/voice/thread/4307458/lately-an-automatic-text-response-saying-hello-is-going-out-how-do-i-stop-this?hl=en",
"title": "Lately an automatic text response saying, \"Hello\" is going out. How do I stop this? - Google Voice Community",
"snippetInfo": [
{
"snippet": "You need to find out what app is causing it and deactivate or delete it. Last edited Apr 16, 2019.",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/a828eb8f442f1dfbdda06dbeb52841b0",
"uri": "https://support.google.com/a/thread/161821861/hello-hello-the-lost-phone?hl=en",
"title": "Hello.Hello the lost phone - Google Workspace Admin Community",
"snippetInfo": [
{
"snippet": "\u003cb\u003eHello\u003c/b\u003e the lost phone. My wife lost her phone but she cannot remember her emails pasward to help track .",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
],
"answerSkippedReasons": [
"NON_ANSWER_SEEKING_QUERY_IGNORED"
]
},
"answerQueryToken": "NMwKDAjFgN-2BhDlsKaZARIkNjZkN2I0NmItMDAwMC0yZmQ5LTkwMDktZjQwMzA0M2E5YTg4"
}
En este ejemplo, se determina que la consulta no busca una respuesta, por lo que no se genera ninguna.
Mostrar solo respuestas relevantes
Vertex AI Search puede evaluar qué tan relevantes son los resultados para una consulta. Si se determina que no hay resultados lo suficientemente relevantes, en lugar de generar una respuesta a partir de resultados no relevantes o mínimamente relevantes, puedes mostrar una respuesta de resguardo: "We do not have a summary for your query.
".
En el siguiente comando, se muestra cómo mostrar la respuesta de resguardo en el caso de resultados irrelevantes cuando se llama al método answer .
REST
Para mostrar una respuesta de resguardo si no se encuentran resultados relevantes, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"answerGenerationSpec": {
"ignoreLowRelevantContent": true
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
Ejemplo de comando y resultado
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{"query": { "text": "foobar"}, "answerGenerationSpec": {
"ignoreLowRelevantContent": true
} }'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "We do not have a summary for your query.",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "foobar"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/719b79786f0c143717c569eade5305d9",
"uri": "https://support.google.com/websearch/thread/261714267/google-foobar-bug-console-disappeared?hl=en",
"title": "Google Foobar Bug - Console Disappeared",
"snippetInfo": [
{
"snippet": "Google \u003cb\u003eFoobar\u003c/b\u003e Bug - Console Disappeared. After I logged in today the top bar says "The \u003cb\u003eFoobar\u003c/b\u003e Challenge will be turned down on 1 April 2024. If you run out of ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/932369826585ff45f6ab3eba01ba6933",
"uri": "https://support.google.com/websearch/thread/95251114/unable-to-contact-foobar-recruiter?hl=en",
"title": "Unable to contact Foobar Recruiter - Google Search Community",
"snippetInfo": [
{
"snippet": "Access is by invitation only so you will need to have the proper credentials to login. You can always reach out using the contact us button, but there is no ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/fb736a30ff90d058be755f0a04a522a8",
"uri": "https://support.google.com/websearch/thread/121151780/foobar-challenge-appeared-to-me-then-disappeared?hl=en",
"title": "Foobar challenge appeared to me then disappeared - Google Search Community",
"snippetInfo": [
{
"snippet": "Hi. I got the \u003cb\u003efoobar\u003c/b\u003e challenge some months ago. But then it disappeared immediately, maybe by misclick (though I don't think I misclicked).",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f56f2656b0d02b839509d0e67e60c1c9",
"uri": "https://support.google.com/chrome/thread/159931759/cannot-access-google-foobar-challenge?hl=en",
"title": "Cannot Access Google FooBar Challenge",
"snippetInfo": [
{
"snippet": "I knew I wouldn't have time for it today, so I just kept the tab in the background. Tonight, I went to go close all my tabs, but the page had changed. It said " ...",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
],
"answerSkippedReasons": [
"NO_RELEVANT_CONTENT"
]
},
"answerQueryToken": "M8gKCwiokvy2BhDtv8EDEiQ2NmQ5NDQxZC0wMDAwLTIxMGQtOWU2Yi1mNDAzMDQ1ZGJkMzA"
}
En este ejemplo, se determinó que los resultados no eran lo suficientemente relevantes para la consulta, por lo que se mostró la respuesta de resguardo en lugar de una respuesta y resultados generados.
Devuelve puntuaciones de asistencia para la conexión a tierra
En el siguiente comando, se muestra cómo mostrar las puntuaciones de compatibilidad con la justificación para las respuestas y los reclamos.
Para obtener información general sobre los fundamentos de Vertex AI, consulta Cómo verificar los fundamentos con RAG . El método de respuesta llama al método groundingConfigs.check
.
REST
Para mostrar una puntuación de respaldo para cada declaración (oración en la respuesta) y una puntuación de respaldo agregada para la respuesta, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"groundingSpec": {
"includeGroundingSupports": true,
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer"
-d '{
"query": { "text": "What is SQL?"},
"groundingSpec": {
"includeGroundingSupports": true,
}
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "SQL stands for Structured Query Language. It is a database management programming language that is used to access and manage data in a database. SQL is used to create, update, and delete data in a database. It can also be used to query data and retrieve information. SQL is a standard language that is used by many different database systems.",
"groundingScore" 0.9
"groundingSupports": [
{
"endIndex": "41",
"sources": [
{
"referenceId": "1"
}
]
"groundingScore": 0.9
"groundingCheckRequired": true
},
{
"startIndex": "42",
"endIndex": "144",
"sources": [
{
"referenceId": "1"
}
]
"groundingScore": 0.8
"groundingCheckRequired": true
},
{
"startIndex": "267",
"endIndex": "342",
"sources": [
{
"referenceId": "2"
}
]
"groundingScore": 0.6
"groundingCheckRequired": true
}
],
"references": [
{
"chunkInfo": {
"content": "There are a lot of Databases available in the market such as MS Access, Oracle and many others.For you to write programs that interact with these databases easily, there has to be a way where you could get information from all these databases using the same method.For this purpose SQL was developed.It is a kind of language (simple when compared to the likes of C or C++) which enables you to ask all your queries to a database without bothering about the exact type of database.When you use this Query the database engine would first find the table called people.Then it would find a column called firstname.Next it would compare all the values in that column with 'Reena'.Finally it would return all the details wherever it finds a match for the firstname.When you write a database program in VC++ or Java or any other language for that matter, you would make a database connection to your database and then you would query the database using SQL queries.When you query the database with any SQL query the database returns a recordset.A recordset is basically a set of records (all the entries that your query returns).This recordset is received in your program and all languages have a data structure which represents a recordset.",
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d993d922043374f5ef7ba297c158b106",
"uri": "gs://my-bucket-123/documents/058dee0ec23a3e92f9bfd7cd29840e8f.txt"
"structData": {
"fields": [
{
"key": "cdoc_url"
"value": { "stringValue": "058dee0ec23a3e92f9bfd7cd29840e8f" }
},
{
"key": "doc_id"
"value": { "stringValue": "d993d922043374f5ef7ba297c158b106" }
}
]
}
}
}
},
{
"chunkInfo": {
"content": "The Structured Query Language (SQL) is a database management programming language.SQL is a tool for accessing databases, and more specifically, relational databases, and can be used with different database products.This chapter will prepare you to learn basic database management using this language.SQLite – To implement SQL as a library, you need SQLite.SQLite is intended to provide users and programs a way to store data using a SQL interface within the program.SQLite3 can be used to manipulate SQLite databases for major Linux distros.SQL is used to access relational databases.Each database contains more or less tables which in turn contain more or less rows and columns.Hereby a single row is seen as a separate object with features represented by the tables' columns.To access a table's data you first have to connect to its database.With the same table, the query SELECT * FROM T WHERE C1 = 1 will result in all the elements of all the rows where the value of column C1 is '1' being shown.A WHERE clause specifies that a SQL statement should only affect rows that meet specified criteria.The criteria are expressed in the form of predicates.WHERE clauses are not mandatory clauses of SQL statements, but should be used to limit the number of rows affected by a SQL DML statement or returned by a query.",
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/3825eac51ef9e934bbc558faa42f4c71",
"uri": "gs://my-bucket-123/documents/26f5872b0719790cb966a697bfa1ea27.txt"
"structData": {
"fields": [
{
"key": "cdoc_url"
"value": { "stringValue": "26f5872b0719790cb966a697bfa1ea27" }
},
{
"key": "doc_id"
"value": { "stringValue": "3825eac51ef9e934bbc558faa42f4c71" }
}
]
}
}
}
},
{
"chunkInfo": {
"content": "This chapter focuses on using Paradox as a client/server development tool.It does not talk about connecting; it is assumed you have already connected.If you are having trouble connecting to a particular SQL server, then refer to the Connection Guide for that particular server.This chapter does review what a user can do interactively with Paradox and how to use ObjectPAL with SQL servers.Structured Query Language (SQL) was developed to create a standard for accessing database information.The ANSI standard for SQL allows a user to become familiar with the commands needed to query many different types of data.After you learn ANSI SQL, you then can query many different databases.Is SQL a solid standard?Yes and no.Yes, the core ANSI SQL commands are solid and consistent from vendor to vendor.Every vendor, however, adds capability to its version of SQL.These improvements are expected because ANSI SQL does not go far enough to cover every feature of every high-end DBMS.The SQL standard is used by many companies for their high-end products.They include Oracle, Sybase, Microsoft SQL, Informix, and Interbase.Paradox also provides the capability to use standard ANSI SQL commands on local Paradox and dBASE tables.Although SQL by definition is a standard, various flavors are on the market.",
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/b3e88db8676b87b99af1e6ecc7d8757f",
"uri": "gs://my-bucket-123/documents/073c21335d37d8d14982cb3437a721c0.txt"
"structData": {
"fields": [
{
"key": "cdoc_url"
"value": { "stringValue": "073c21335d37d8d14982cb3437a721c0" }
},
{
"key": "doc_id"
"value": { "stringValue": "b3e88db8676b87b99af1e6ecc7d8757f" }
}
]
}
}
}
}
],
...
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "What is SQL?"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d993d922043374f5ef7ba297c158b106",
"uri": "gs://my-bucket-123/documents/058dee0ec23a3e92f9bfd7cd29840e8f.txt",
"chunkInfo": [
{
"content": "There are a lot of Databases available in the market such as MS Access, Oracle and many others.For you to write programs that interact with these databases easily, there has to be a way where you could get information from all these databases using the same method.For this purpose SQL was developed.It is a kind of language (simple when compared to the likes of C or C++) which enables you to ask all your queries to a database without bothering about the exact type of database.When you use this Query the database engine would first find the table called people.Then it would find a column called firstname.Next it would compare all the values in that column with 'Reena'.Finally it would return all the details wherever it finds a match for the firstname.When you write a database program in VC++ or Java or any other language for that matter, you would make a database connection to your database and then you would query the database using SQL queries.When you query the database with any SQL query the database returns a recordset.A recordset is basically a set of records (all the entries that your query returns).This recordset is received in your program and all languages have a data structure which represents a recordset."
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/3825eac51ef9e934bbc558faa42f4c71",
"uri": "gs://my-bucket-123/documents/26f5872b0719790cb966a697bfa1ea27.txt",
"chunkInfo": [
{
"content": "The Structured Query Language (SQL) is a database management programming language.SQL is a tool for accessing databases, and more specifically, relational databases, and can be used with different database products.This chapter will prepare you to learn basic database management using this language.SQLite – To implement SQL as a library, you need SQLite.SQLite is intended to provide users and programs a way to store data using a SQL interface within the program.SQLite3 can be used to manipulate SQLite databases for major Linux distros.SQL is used to access relational databases.Each database contains more or less tables which in turn contain more or less rows and columns.Hereby a single row is seen as a separate object with features represented by the tables' columns.To access a table's data you first have to connect to its database.With the same table, the query SELECT * FROM T WHERE C1 = 1 will result in all the elements of all the rows where the value of column C1 is '1' being shown.A WHERE clause specifies that a SQL statement should only affect rows that meet specified criteria.The criteria are expressed in the form of predicates.WHERE clauses are not mandatory clauses of SQL statements, but should be used to limit the number of rows affected by a SQL DML statement or returned by a query."
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/b3e88db8676b87b99af1e6ecc7d8757f",
"uri": "gs://my-bucket-123/documents/073c21335d37d8d14982cb3437a721c0.txt",
"chunkInfo": [
{
"content": "This chapter focuses on using Paradox as a client/server development tool.It does not talk about connecting; it is assumed you have already connected.If you are having trouble connecting to a particular SQL server, then refer to the Connection Guide for that particular server.This chapter does review what a user can do interactively with Paradox and how to use ObjectPAL with SQL servers.Structured Query Language (SQL) was developed to create a standard for accessing database information.The ANSI standard for SQL allows a user to become familiar with the commands needed to query many different types of data.After you learn ANSI SQL, you then can query many different databases.Is SQL a solid standard?Yes and no.Yes, the core ANSI SQL commands are solid and consistent from vendor to vendor.Every vendor, however, adds capability to its version of SQL.These improvements are expected because ANSI SQL does not go far enough to cover every feature of every high-end DBMS.The SQL standard is used by many companies for their high-end products.They include Oracle, Sybase, Microsoft SQL, Informix, and Interbase.Paradox also provides the capability to use standard ANSI SQL commands on local Paradox and dBASE tables.Although SQL by definition is a standard, various flavors are on the market."
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/3dd4014e41044c5dd6a0fe380847f369",
"uri": "gs://my-bucket-123/documents/76245cb33a66f4fbd9030a2a11eea00d.txt",
"chunkInfo": [
{
"content": "SQL injection is a code injection technique that might destroy your database.You can read more here OWASP sql injection testing sheet.Description: SQL injection ( second order) SQL injection vulnerabilities arise when user- controllable data is incorporated sheet into database SQL queries in an unsafe manner.This sheet cheat wiki assumes you have a basic understanding of SQL injection, please go here for an introduction if you are unfamiliar.Bypass login page with sql SQL injection [ closed].Gone are the days when knowledge sheet of just sql SQL Injection or XSS could help you land a lucrative high- paying InfoSec job.There is many sheet differnet variations you would login have probably have to try to make this exploit work ( sql especially if it is sql a blind SQL exploit).SQL injection usually occurs when you ask a user for input, like their.ゲストブック/ コメントの例.Submit Text Post.Get an ad- free experience with special benefits, and directly support Reddit.get reddit premium.SQL Injection Cheat.Many web applications have an authentication system: a user provides a user name and password, the web application checks them and stores the corresponding user id in the session hash.Login # 1 Login # 2 Login # 3 Login # 4."
}
]
}
]
}
}
]
}
]
}
}
En este ejemplo, se muestra una puntuación de respaldo ("groundingScore") para cada cita.
Mostrar solo respuestas bien fundamentadas
En el siguiente comando, se muestra cómo mostrar solo aquellas respuestas que se consideran fundamentadas en el corpus , la información del almacén de datos.
Se filtran las respuestas poco fundamentadas.
Elige un umbral de nivel bajo o alto para la puntuación de compatibilidad con puesta a tierra. Luego, la respuesta solo se muestra si cumple o supera ese nivel. Puedes experimentar con los dos umbrales de filtro y sin umbral para determinar qué nivel de filtro es probable que proporcione los mejores resultados para tus usuarios.
Para obtener información general sobre los fundamentos de Vertex AI, consulta Cómo verificar los fundamentos con RAG . El método de respuesta llama al método groundingConfigs.check
.
REST
Para mostrar una respuesta solo si cumple con un umbral de puntuación de compatibilidad, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"groundingSpec": {
"filteringLevel": "FILTER_LEVEL "
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
FILTER_LEVEL
: Es una enumeración para filtrar respuestas según la puntuación de compatibilidad con la información de referencia. Las opciones son FILTERING_LEVEL_LOW
y FILTERING_LEVEL_HIGH
. Si no se incluye filteringLevel
, no se aplica ningún filtro de puntuación de asistencia a la respuesta.
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{
"query": { "text": "When can an NCD be made?"},
"groundingSpec": {
"filtering_level": "FILTERING_LEVEL_HIGH"
}
}'
{
answer {
state: SUCCEEDED
answer_text: "We do not have a summary for your query."
steps {
state: SUCCEEDED
description: "Rephrase the query and search."
actions {
search_action {
query: "test?"
}
observation {
search_results {
document: "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7f5cfde02"
uri: "gs://my-bucket-123/data/CoverageDocumentation.pdf"
title: "ABC345_0101"
chunk_info {
content: "This notice implements part of section 731 of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 by describing a method of developing, and making available to the public, guidance documents under the Medicare program… "
}
...
search_results {
document: "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7f5cfde02"
uri: "gs://my-bucket-123/data/CoverageDocumentation.pdf"
title: "ABC345_0101"
chunk_info {
content: "For the purposes of this notice, the term guidance documents means documents prepared for our staff, potential requestors of National Coverage Determinations, and other interested parties explaining the NCD process… "
}
}
}
}
}
answer_skipped_reasons: LOW_GROUNDED_CONTENT
}
En este ejemplo, no se muestra ninguna respuesta porque no se cumplió el umbral alto.
Especifica el modelo de respuesta
En el siguiente comando, se muestra cómo cambiar la versión del modelo que se usa para generar respuestas.
Para obtener información sobre los modelos compatibles, consulta Versiones y ciclo de vida de los modelos de generación de respuestas .
REST
Para generar una respuesta con un modelo diferente del predeterminado, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"answerGenerationSpec": {
"modelSpec": {
"modelVersion": "MODEL_VERSION ",
}
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
MODEL_VERSION
: Es la versión del modelo que deseas usar para generar la respuesta. Para obtener más información, consulta Versiones y ciclo de vida del modelo de generación de respuestas .
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{"query": { "text": "Compare bigquery with spanner database?"}, "answerGenerationSpec": {
"modelSpec": {
"modelVersion": "preview",
}
} }'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "Cloud Spanner is a fully managed relational database optimized for transactional workloads. BigQuery is a serverless, highly scalable, and cost-effective multi-cloud data warehouse designed for business agility. BigQuery is optimized for ad-hoc analysis and reporting. Both Spanner and BigQuery are built on Google's distributed storage system, Colossus, and their internal cluster management system, Borg. They are also built on Jupiter, Google's in-house custom network hardware and software.\n\nBigQuery can query data stored in Spanner in real time without moving or copying the data. This is possible with BigQuery's query federation support. To run a federated query, you need to configure an external data source in BigQuery that points to the intended Spanner instance. You can then write queries that can be used to populate a BigQuery table on demand or scheduled to run as needed. You can also join the query with another BigQuery result set dynamically.\n\nYou can also use Dataflow to copy data from Spanner to BigQuery. Dataflow is a service that can be used to ingest Spanner data into BigQuery. This is useful for more complex transformations or external dependencies. For example, an online gaming company might use Spanner to store game data and BigQuery to perform analytics on player behavior. They can replicate data from Spanner into BigQuery and perform analytics against local data, or they can use federated queries to retrieve data from Spanner on-demand.\n",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "Compare bigquery with spanner database?"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/ecc0e7547253f4ca3ff3328ce89995af",
"uri": "https://cloud.google.com/blog/topics/developers-practitioners/how-spanner-and-bigquery-work-together-handle-transactional-and-analytical-workloads",
"title": "How Spanner and BigQuery work together to handle transactional and analytical workloads | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "Using Cloud \u003cb\u003eSpanner\u003c/b\u003e and \u003cb\u003eBigQuery\u003c/b\u003e also allows customers to build their \u003cb\u003edata\u003c/b\u003e clouds using Google Cloud, a unified, open approach to \u003cb\u003edata\u003c/b\u003e-driven transformation ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d7e238f73608a860e00b752ef80e2941",
"uri": "https://cloud.google.com/blog/products/databases/cloud-spanner-gets-stronger-with-bigquery-federated-queries",
"title": "Cloud Spanner gets stronger with BigQuery-federated queries | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "As enterprises compete for market share, their need for real-time insights has given rise to increased demand for transactional \u003cb\u003edatabases\u003c/b\u003e to support \u003cb\u003edata\u003c/b\u003e ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/e10a5a3c267dc61579e7c00fefe656eb",
"uri": "https://cloud.google.com/blog/topics/developers-practitioners/replicating-cloud-spanner-bigquery-scale",
"title": "Replicating from Cloud Spanner to BigQuery at scale | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "... \u003cb\u003eSpanner data\u003c/b\u003e into \u003cb\u003eBigQuery\u003c/b\u003e for analytics. In this post, you will learn how to efficiently use this feature to replicate large tables with high throughput ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/648c220055c1d2ac369165007d9f6650",
"uri": "https://cloud.google.com/blog/products/databases/choosing-cloud-spanner-for-game-development",
"title": "Choosing Cloud Spanner for game development | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "To get started with \u003cb\u003eSpanner\u003c/b\u003e, create a \u003cb\u003edatabase\u003c/b\u003e, or try it out with a \u003cb\u003eSpanner\u003c/b\u003e Qwiklab. ... AlloyDB \u003cb\u003evs\u003c/b\u003e. ... SQL for SQL Server to \u003cb\u003eBigQuery\u003c/b\u003e. By Alexander ...",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
]
},
"answerQueryToken": "NMwKDAivmvy2BhCxnsqdARIkNjZkOTQ0NWEtMDAwMC0yMTBkLTllNmItZjQwMzA0NWRiZDMw"
}
En este ejemplo, se usa la versión preliminar del modelo en lugar del modelo predeterminado.
Especifica un preámbulo personalizado
En el siguiente comando, se muestra cómo configurar un preámbulo para la respuesta generada. Un preámbulo contiene instrucciones en lenguaje natural para personalizar la respuesta. Puedes solicitar personalizaciones, como la longitud, el nivel de detalle, el estilo de salida (como "simple"), el idioma de salida, el enfoque de la respuesta y el formato (como tablas, viñetas y XML). Por ejemplo, un preámbulo podría ser “Explícalo como si fueras un niño de diez años”.
El preámbulo puede tener un efecto significativo en la calidad de la respuesta generada. Para obtener información sobre qué escribir en los preámbulos y ejemplos de buenos preámbulos, consulta Acerca de los preámbulos personalizados .
REST
Para generar una respuesta con un modelo diferente del predeterminado, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"answerGenerationSpec": {
"promptSpec": {
"preamble": "PREAMBLE ",
}
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
PREAMBLE
: Una instrucción de lenguaje natural para personalizar la respuesta. Por ejemplo, prueba show the answer format in
an ordered list
o give a very detailed answer
.
Ejemplo de comando y resultado
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{
"query": { "text": "what is bigquery?"},
"answerGenerationSpec": {
"promptSpec": {
"preamble": "Explain like you are a ten years old
kid ",
}
}
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "BigQuery is like a super-powered storage space for your data, but it's in the cloud, not on your computer. It's like a giant warehouse for all your information, but you don't have to build or manage it yourself. You can use BigQuery to find patterns and insights in your data, like figuring out what people like to buy or how many people visited your website. It's like having a super-smart assistant that can help you understand your data better. BigQuery is really good at working with lots of data, even billions of pieces of information. \n",
"steps ": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "What is BigQuery?"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/2d032dc582689e8c0ecea7fc7bfa3189",
"uri": "https://cloud.google.com/bigquery",
"title": "BigQuery enterprise data warehouse | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eBigQuery\u003c/b\u003e is a fully managed, AI-ready data analytics platform that helps you maximize value from your data and is designed to be multi-engine, multi-format, ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/4474f4a5a18ecd611dedfe323dfe55d9",
"uri": "https://cloud.google.com/bigquery/docs/introduction",
"title": "BigQuery overview | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eBigQuery\u003c/b\u003e is a fully managed, AI-ready data platform that helps you manage and analyze your data with built-in features like machine learning, search, ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/c840fdef90d86328f13bbedbdbf0ac10",
"uri": "https://cloud.google.com/bigquery/docs/query-overview",
"title": "Overview of BigQuery analytics | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eBigQuery\u003c/b\u003e lets you save queries and share queries with others. When you save a query, it can be private (visible only to you), shared at the project level ( ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/5cbfab8ce1d5f6ffe45fef22900c9a00",
"uri": "https://cloud.google.com/curated-resources/bigquery",
"title": "Guides BigQuery | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eBigQuery\u003c/b\u003e is Google Cloud's fully managed and serverless enterprise data warehouse solution, designed to help you make informed decisions quickly, so you can ...",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
]
},
"answerQueryToken": "NMwKDAi8hN-2BhC0jMCPARIkNjZkN2I4MzItMDAwMC0yMTliLTkxN2EtMDg5ZTA4MjA0YjFj"
}
En este ejemplo, el preámbulo solicita una respuesta más simple que la que podría proporcionar la configuración predeterminada.
Cómo incluir citas
En el siguiente comando, se muestra cómo solicitar que se incluyan citas con la respuesta.
REST
Para generar una respuesta con un modelo diferente del predeterminado, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"answerGenerationSpec": {
"includeCitations": INCLUDE_CITATIONS
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
INCLUDE_CITATIONS
: Especifica si se deben incluir los metadatos de la cita en la respuesta. El valor predeterminado es false
.
Ejemplo de comando y resultado parcial
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{"query": { "text": "What is SQL"}, "answerGenerationSpec": {
"includeCitations": true
}
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "SQL stands for Structured Query Language and is a programming language used to manage, query, and retrieve data in a relational database. It is the standard language used by relational database management systems (RDBMS) such as PostgreSQL, SQL Server, MySQL, and Oracle Database. SQL statements are written in a statement format for queries and other database operations, allowing users to manipulate data in relational database tables. SQL is used to create and update the structure of tables, read and write data, manage user permissions, and perform administrative tasks. While originally created for relational databases, SQL is now a foundation for many technology capabilities, making SQL knowledge essential for many technology roles. \n",
"citations": [
{
"endIndex": "137",
"sources": [
{
"referenceId": "0"
},
{
"referenceId": "1"
}
]
},
{
"startIndex": "138",
"endIndex": "437",
"sources": [
{
"referenceId": "3"
}
]
},
{
"startIndex": "438",
"endIndex": "575",
"sources": [
{
"referenceId": "2"
}
]
},
{
"startIndex": "576",
"endIndex": "742",
"sources": [
{
"referenceId": "3"
}
]
}
],
"references": [
{
"chunkInfo": {
"content": "There may be a second table that stores visit information. A relational database uses a unique ID for each row to maintain the linked patient information across the two tables. This way, you can quickly look up the visits of each patient. Sign up for a free trial for any of Google Cloud's SQL databases, which include AlloyDB, Cloud SQL, and Spanner. Get started for free What is SQL? SQL (Structured Query Language) is a programming language used to store, retrieve, and manage data in a relational database. SQL statements are English-like, making the language accessible to software developers, data analysts, and other practitioners. Benefits of SQL databases Enterprises choose SQL databases for being: Efficient. Relational databases are incredibly efficient in managing complex queries. Fast. SQL databases can retrieve large amounts of data, quickly. This makes them highly desirable for real-time transactional data. Reliable. SQL databases provide a high degree of data integrity and are ACID-compliant. SQL database engines There are numerous SQL database engines (products) used to build software applications. Some of the most popular include PostgreSQL, MySQL, SQL Server, and Oracle. Some database engines are open source while others are commercial offerings. ",
"relevanceScore": 0.9,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/7218ff4f57328d86059246d4af3a9953",
"uri": "https://cloud.google.com/discover/what-are-sql-databases",
"title": "SQL Databases | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "PostgreSQL vs. SQL Server: What's the difference? | Google Cloud Page Contents Topics PostgreSQL vs. SQL PostgreSQL vs SQL Server: What are the key differences? Trying to find the right database for your applications? When it comes to choosing a database technology, the most common SQL options to consider are PostgreSQL vs. SQL Server. While both systems share many core features, there are some key differences—the major one being that PostgreSQL is open source and SQL Server is owned by Microsoft. Today, it is more vital than ever for companies to be able to manage, store, and activate data for modern business operations. With the growing assortment of databases available to choose from, it can be overwhelming to pick the right one for your applications. The most important thing to remember is that no single database will be a good match for every project requirement, so it's critical to understand the option that will work best for your specific use case. So, what is PostgreSQL vs. SQL Server? In this short guide, we'll discuss the basic differences between PostgreSQL and SQL Server. Get started for freeStay informed What is SQL? Structured Query Language or SQL, as it's more commonly known, is a programming language used to manage, query, and retrieve data in a relational database. ",
"relevanceScore": 0.8,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7cd9afab1282a9f57cdcee1885bb4c6",
"uri": "https://cloud.google.com/learn/postgresql-vs-sql",
"title": "PostgreSQL vs. SQL Server: What's the difference? | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "SQL Databases | Google Cloud Page Contents Topics What are SQL databases? What are SQL databases? A SQL database, also known as a relational database, is a system that stores and organizes data into highly structured tables of rows and columns. These databases offer Structured Query Language (SQL) to read and write the data, and are categorized as relational database management systems (RDBMS). SQL statements are used to create and update the structure of tables, read and write data, manage user permissions, and perform administrative tasks. For example, a CREATE statement is used to create a table, an INSERT statement adds a new row to a table, and a SELECT statement performs a database query. Statements that make structural or administrative changes are usually reserved for software developers and administrators, while read and write operations are performed by end-user applications. A relational database maintains the ability to link information across multiple tables. This format makes it easy to quickly gain insights about the relationships between various columns or data points in these tables. A relational database can create indexes for particular columns for faster lookups. For example, a healthcare facility might maintain a table containing rows of patient information, where each row is one patient and the columns contain data points, such as the patient's name, insurance information, and contact details. ",
"relevanceScore": 0.8,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/7218ff4f57328d86059246d4af3a9953",
"uri": "https://cloud.google.com/discover/what-are-sql-databases",
"title": "SQL Databases | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "It is the standard language used by relational database management systems (RDBMS), including PostgreSQL, SQL Server, MySQL, and Oracle Database. SQL typically uses commands written in statement format for queries and other database operations, which allow users to manipulate data in relational database tables. While originally created for relational databases, SQL acts as a foundation for many of today's technology capabilities, making SQL knowledge an essential skill for many technology roles today, including data analysts, database engineers, and even backend programming. However, you will find that there are different variants of SQL depending on the database or database management system that you choose. What is Microsoft SQL Server? SQL Server is a leading RDBMS that is built on top of SQL and developed by Microsoft. It is used to manage and store data to support numerous enterprise use cases for business intelligence, transaction processing, data analytics, and machine learning services. SQL Server has a row-based table structure that allows you to connect related data elements from different tables without having to store data multiple times in a database. In general, Microsoft SQL Server is known for its high availability, fast performance when handling large workloads, and easy integration with other applications to gain business intelligence across your entire data estate. For more information, we recommend reviewing the official SQL Server documentation. ",
"relevanceScore": 0.8,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7cd9afab1282a9f57cdcee1885bb4c6",
"uri": "https://cloud.google.com/learn/postgresql-vs-sql",
"title": "PostgreSQL vs. SQL Server: What's the difference? | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "Send feedback The GoogleSQL language in Spanner bookmark_borderbookmark Stay organized with collections Save and categorize content based on your preferences. Dismiss Got it GoogleSQL is the new name for Google Standard SQL! New name, same great SQL dialect. This page provides an overview of supported statements in GoogleSQL. GoogleSQL is an ANSI compliant Structured Query Language (SQL) which includes the following types of supported statements: Query statements, also known as Data Query Language (DQL) statements, are the primary method to analyze data in Spanner. They scan one or more tables or expressions and return the computed result rows. Data Definition Language (DDL) statements let you create and modify database objects such as tables, views, and database roles. Data Manipulation Language (DML) statements enable you to update, insert, and delete data from your Spanner tables. Data Access Control statements let you grant and revoke access privileges at the table and column level. Transaction Control statements allow you to manage transactions for data modifications. Was this helpful? Send feedback Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. ",
"relevanceScore": 0.7,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/0c5c094170756eeb6bdfec6eb5c7d081",
"uri": "https://cloud.google.com/spanner/docs/reference/standard-sql/overview",
"title": "The GoogleSQL language in Spanner | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "FAQ Expand all What is Cloud SQL? Cloud SQL is a service that delivers fully managed relational databases in the cloud. It offers MySQL, PostgreSQL, and SQL Server database engines. How is Cloud SQL different from other cloud databases? Cloud SQL is valued for its openness, ease of use, security, cost-efficiency, and Google Cloud integration—in fact, more than 95% of Google Cloud's top 100 customers use it. If you're comparing PostgreSQL options on Google Cloud, view our comparison chart. What's the difference between the Enterprise and Enterprise Plus editions? For PostgreSQL, the Enterprise Plus edition brings enhanced availability, performance, and data protection capabilities. Specifically, it provides a 99.99% availability SLA with near-zero downtime maintenance, optimized hardware and software configurations, intelligent data caching for read-intensive transactional workloads, a configurable data cache option and 35 days of log retention. For MySQL, the Enterprise Plus edition brings enhanced availability, performance, and data protection capabilities. Specifically, it provides a 99.99% availability SLA with near-zero downtime maintenance, optimized hardware and software configurations, intelligent data caching for read-intensive transactional workloads, a configurable data cache option, 35 days of log retention and advanced disaster recovery capabilities like orchestrated failover and switchback. ",
"relevanceScore": 0.7,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/931f2c8e19ed54a407857f1cad3b5aaa",
"uri": "https://cloud.google.com/sql",
"title": "Cloud SQL for MySQL, PostgreSQL, and SQL Server | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "PostgreSQL versus SQL PostgreSQL is an open-source, object-relational database (ORDBMS) designed for enterprise-level performance and is valued for its reliability and robust features. Its long history of development and its use of SQL makes it one of the most popular open source databases worldwide. Its default procedural language is an extension of pgSQL (PL/pgSQL), with procedural language extensions of Tcl, Perl, and Python included in the standard distribution (written as PL/Tcl, PL/Perl, and PL/Python). Many more languages are supported through extensions, including Java, Ruby, C, C++, Delphi, and JavaScript. For a more in-depth comparison, visit our PostgreSQL versus SQL guide. MySQL versus SQL MySQL is a popular open source relational database created in 1995 and currently sponsored by Oracle. It supports SQL queries and can be administered either through a graphical user interface (GUI) or a command line. MySQL can be deployed manually on a physical machine or through a cloud service provider. Enterprises are increasingly choosing fully managed services to reduce the maintenance burden of their databases. What is SQL Server? SQL Server is a Microsoft-owned database that runs SQL queries. Dive into the differences between PostgreSQL and SQL Server. ",
"relevanceScore": 0.6,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/7218ff4f57328d86059246d4af3a9953",
"uri": "https://cloud.google.com/discover/what-are-sql-databases",
"title": "SQL Databases | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "Send feedback On this page BigQuery SQL dialects Changing from the default dialect What's next Introduction to SQL in BigQuery bookmark_borderbookmark Stay organized with collections Save and categorize content based on your preferences. Dismiss Got it GoogleSQL is the new name for Google Standard SQL! New name, same great SQL dialect. This document provides an overview of supported statements and SQL dialects in BigQuery. GoogleSQL is an ANSI compliant Structured Query Language (SQL) which includes the following types of supported statements: Query statements, also known as Data Query Language (DQL) statements, are the primary method to analyze data in BigQuery. They scan one or more tables or expressions and return the computed result rows. Procedural language statements are procedural extensions to GoogleSQL that allow you to execute multiple SQL statements in one request. Procedural statements can use variables and control-flow statements, and can have side effects. Data Definition Language (DDL) statements let you create and modify database objects such as tables, views, functions, and row-level access policies. Data Manipulation Language (DML) statements enable you to update, insert, and delete data from your BigQuery tables. Data Control Language (DCL) statements let you control BigQuery system resources such as access and capacity. Transaction Control Language (TCL) statements allow you to manage transactions for data modifications. ",
"relevanceScore": 0.6,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/2f6fc3e29873518196cb50195d7ded45",
"uri": "https://cloud.google.com/bigquery/docs/introduction-sql",
"title": "Introduction to SQL in BigQuery | Google Cloud"
}
}
},
{
"chunkInfo": {
"content": "Database administration Cloud SQL pricing Connect to a Cloud SQL managed database Cloud SQL updates Configuration updates System updates What's next Home Cloud SQL Documentation Guides Was this helpful? Send feedback Cloud SQL overview bookmark_borderbookmark Stay organized with collections Save and categorize content based on your preferences. Dismiss Got it On this page Database configurations with Cloud SQL Use cases for Cloud SQL What Cloud SQL provides What is a Cloud SQL instance? Database administration Cloud SQL pricing Connect to a Cloud SQL managed database Cloud SQL updates Configuration updates System updates What's next Cloud SQL is a fully managed relational database service for MySQL, PostgreSQL, and SQL Server. This frees you from database administration tasks so that you have more time to manage your data. This page discusses basic concepts and terminology for Cloud SQL, which provides SQL data storage for Google Cloud. For a more in-depth explanation of key concepts, see the key terms and features pages. For information about how Cloud SQL databases compare with one another, see Cloud SQL feature support by database engine. Database configurations with Cloud SQL The following video shows you the benefits of using Cloud SQL. ",
"relevanceScore": 0.6,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/4098ae11bfa400e8f1b8e9ba59d2b71b",
"uri": "https://cloud.google.com/sql/docs/introduction",
"title": "Cloud SQL overview"
}
}
},
{
"chunkInfo": {
"content": "Cloud SQL documentation View all product documentation Cloud SQL is a fully-managed database service that helps you set up, maintain, manage, and administer your relational databases on Google Cloud Platform. You can use Cloud SQL with MySQL, PostgreSQL, or SQL Server. Not sure what database option is right for you? Learn more about our database services. Learn more about Cloud SQL. Documentation resources Find quickstarts and guides, review key references, and get help with common issues. format_list_numbered Guides Cloud SQL overview Database engine feature support MySQL PostgreSQL SQL Server find_in_page Reference gcloud commands REST API Client libraries info Resources Pricing Release notes Resources Try Cloud SQL for yourself Create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads. Try Cloud SQL free Was this helpful? Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Last updated 2024-08-29 UTC. ",
"relevanceScore": 0.5,
"documentMetadata": {
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/37935181d99a6ad3b4897e673a7a7986",
"uri": "https://cloud.google.com/sql/docs",
"title": "Cloud SQL documentation"
}
}
}
],
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "What is SQL?"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/7218ff4f57328d86059246d4af3a9953",
"uri": "https://cloud.google.com/discover/what-are-sql-databases",
"title": "SQL Databases | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eSQL\u003c/b\u003e (Structured Query Language) is a programming language used to store, retrieve, and manage data in a relational database. \u003cb\u003eSQL\u003c/b\u003e statements are English-like, ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7cd9afab1282a9f57cdcee1885bb4c6",
"uri": "https://cloud.google.com/learn/postgresql-vs-sql",
"title": "PostgreSQL vs. SQL Server: What's the difference? | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eSQL\u003c/b\u003e typically uses commands written in statement format for queries and other database operations, which allow users to manipulate data in relational database ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/3afdede140d0906c2146a2f2b3a7821e",
"uri": "https://cloud.google.com/blog/topics/developers-practitioners/what-cloud-sql",
"title": "What is Cloud SQL? | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "It is a fully managed relational database for MySQL, PostgreSQL and \u003cb\u003eSQL\u003c/b\u003e Server. It reduces maintenance cost and automates database provisioning, storage ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/0c5c094170756eeb6bdfec6eb5c7d081",
"uri": "https://cloud.google.com/spanner/docs/reference/standard-sql/overview",
"title": "The GoogleSQL language in Spanner | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eGoogleSQL\u003c/b\u003e is the new name for Google Standard \u003cb\u003eSQL\u003c/b\u003e! New name, same great \u003cb\u003eSQL\u003c/b\u003e dialect. This page provides an overview of supported statements in \u003cb\u003eGoogleSQL\u003c/b\u003e.",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
]
},
"answerQueryToken": "NMwKDAiFm_y2BhC_nfrYAxIkNjZkYjg3NjItMDAwMC0yZTBkLTg0ZDAtMDg5ZTA4MmRjYjg0"
}
Establece el código de idioma de la respuesta
En el siguiente comando, se muestra cómo establecer el código de idioma de las respuestas.
REST
Para generar una respuesta con un modelo diferente del predeterminado, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"answerGenerationSpec": {
"answerLanguageCode": "ANSWER_LANGUAGE_CODE "
}
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search que quieres consultar.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
ANSWER_LANGUAGE_CODE
: Es un código de idioma para la respuesta. Usa las etiquetas de idioma definidas en BCP47: Etiquetas para identificar idiomas .
Ejemplo de comando y resultado
curl -X POST -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer" \
-d '{"query": { "text": "What is SQL"}, "answerGenerationSpec": {
"answerLanguageCode": "es"
}
}'
{
"answer": {
"state": "SUCCEEDED",
"answerText": "SQL, que significa Structured Query Language, es un lenguaje de programación utilizado para almacenar, recuperar y administrar datos en una base de datos relacional. Las instrucciones de SQL son similares al inglés, lo que hace que el lenguaje sea accesible para desarrolladores de software, analistas de datos y otros profesionales. Las bases de datos SQL se utilizan para administrar y almacenar datos para apoyar numerosos casos de uso empresariales, como la inteligencia empresarial, el procesamiento de transacciones, el análisis de datos y los servicios de aprendizaje automático. SQL es el lenguaje estándar utilizado por los sistemas de gestión de bases de datos relacionales (RDBMS), incluidos PostgreSQL, SQL Server, MySQL y Oracle Database. SQL se utiliza para crear y actualizar la estructura de las tablas, leer y escribir datos, administrar los permisos de los usuarios y realizar tareas administrativas. \n",
"steps": [
{
"state": "SUCCEEDED",
"description": "Rephrase the query and search.",
"actions": [
{
"searchAction": {
"query": "What is SQL?"
},
"observation": {
"searchResults": [
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/7218ff4f57328d86059246d4af3a9953",
"uri": "https://cloud.google.com/discover/what-are-sql-databases",
"title": "SQL Databases | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eSQL\u003c/b\u003e (Structured Query Language) is a programming language used to store, retrieve, and manage data in a relational database. \u003cb\u003eSQL\u003c/b\u003e statements are English-like, ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/f7cd9afab1282a9f57cdcee1885bb4c6",
"uri": "https://cloud.google.com/learn/postgresql-vs-sql",
"title": "PostgreSQL vs. SQL Server: What's the difference? | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eSQL\u003c/b\u003e typically uses commands written in statement format for queries and other database operations, which allow users to manipulate data in relational database ...",
"snippetStatus": "SUCCESS"
}
]
},
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/3afdede140d0906c2146a2f2b3a7821e",
"uri": "https://cloud.google.com/blog/topics/developers-practitioners/what-cloud-sql",
"title": "What is Cloud SQL? | Google Cloud Blog",
"snippetInfo": [
{
"snippet": "It is a fully managed relational database for MySQL, PostgreSQL and \u003cb\u003eSQL\u003c/b\u003e Server. It reduces maintenance cost and automates database provisioning, storage ...",
"snippetStatus": "SUCCESS"
}
]
},
...
{
"document": "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/0c5c094170756eeb6bdfec6eb5c7d081",
"uri": "https://cloud.google.com/spanner/docs/reference/standard-sql/overview",
"title": "The GoogleSQL language in Spanner | Google Cloud",
"snippetInfo": [
{
"snippet": "\u003cb\u003eGoogleSQL\u003c/b\u003e is the new name for Google Standard \u003cb\u003eSQL\u003c/b\u003e! New name, same great \u003cb\u003eSQL\u003c/b\u003e dialect. This page provides an overview of supported statements in \u003cb\u003eGoogleSQL\u003c/b\u003e.",
"snippetStatus": "SUCCESS"
}
]
}
]
}
}
]
}
]
},
"answerQueryToken": "NMwKDAjim_y2BhDftIjEAhIkNjZkOTQ0NWQtMDAwMC0yMTBkLTllNmItZjQwMzA0NWRiZDMw"
}
En este ejemplo, aunque los documentos de origen están en inglés, la respuesta se proporciona en español.
Comandos para preguntas de seguimiento
Las preguntas adicionales son consultas de varios turnos. Después de la primera consulta en una sesión de seguimiento, los "turnos" posteriores tienen en cuenta las interacciones anteriores. Con las preguntas adicionales, el método de respuesta también puede sugerir preguntas relacionadas, que los usuarios pueden elegir en lugar de ingresar sus propias preguntas adicionales.
Todas las funciones de respuestas y preguntas adicionales que se describen en las secciones anteriores, como citas, filtros, Búsqueda segura, ignorar ciertos tipos de consultas y usar un preámbulo para personalizar las respuestas, se pueden aplicar junto con las preguntas adicionales.
Ejemplo de una sesión de seguimiento
El siguiente es un ejemplo de una sesión con seguimientos. Supongamos que quieres saber sobre las vacaciones en México:
Vuelta 1:
Tú: ¿Cuál es la mejor época del año para ir de vacaciones a México?
Respuesta con preguntas adicionales: La mejor época para ir de vacaciones a México es durante la temporada seca, que va de noviembre a abril.
Vuelta 2:
Vuelta 3:
Sin las preguntas adicionales, no se podría responder a la pregunta "¿Cuál es el tipo de cambio?", ya que la búsqueda normal no sabría que quieres el tipo de cambio de México. Del mismo modo, sin los seguimientos, no habría el contexto necesario para brindarte las temperaturas específicas de México.
Cuando preguntas “¿Cuál es la mejor época del año para vacacionar en México?”, además de responder tu pregunta, la respuesta y las preguntas adicionales pueden sugerir otras preguntas que podrías hacer, como “¿Cuál es el mes más económico para vacacionar en México?” y “¿Cuáles son los meses turísticos en México?”.
Después de habilitar la función de preguntas relacionadas, las preguntas se muestran como cadenas en ConverseConversationResponse .
Acerca de las sesiones
Para comprender cómo funcionan las acciones de seguimiento en la Búsqueda de Vertex AI, debes conocer las sesiones.
Una sesión se compone de consultas de texto que proporciona un usuario y respuestas que proporciona Vertex AI Search.
Estos pares de consulta y respuesta a veces se denominan turnos . En el ejemplo anterior, el segundo turno consta de "¿Cuál es el tipo de cambio?" y "1 USD equivale a aproximadamente 17.65 pesos mexicanos".
Las sesiones se almacenan con la app. En la app, el recurso de sesión representa una sesión.
Además de contener los mensajes de consulta y respuesta, el recurso de sesión tiene lo siguiente:
Un nombre único (el ID de la sesión)
Un estado (en curso o completado).
Un seudo-ID de usuario, que es un ID de visitante que realiza un seguimiento del usuario. Se puede asignar de forma programática.
Una hora de inicio y una de finalización
Un turno, que es un par de consulta y respuesta.
Almacena información de la sesión y obtén respuestas
Puedes usar la línea de comandos para generar respuestas de búsqueda y almacenarlas junto con cada búsqueda en una sesión.
REST
Para usar la línea de comandos y crear una sesión y generar respuestas a partir de la entrada del usuario, sigue estos pasos:
Especifica la app en la que deseas almacenar la sesión:
curl -X POST \
-H "Authorization: Bearer $( gcloud auth print-access-token) " \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions" \
-d '{
"userPseudoId": "USER_PSEUDO_ID "
}'
Reemplaza lo siguiente:
PROJECT_ID : El ID de tu proyecto de Google Cloud .
APP_ID : El ID de la app de Vertex AI Search.
USER_PSEUDO_ID : Es un identificador único para hacer un seguimiento de un visitante de búsqueda. Por ejemplo, puedes implementar esto con una cookie HTTP,
que identifica de forma única a un visitante en un solo dispositivo.
Ejemplo de comando y resultado
curl -X POST -H "Authorization: Bearer $( gcloud auth print-access-token) "
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/sessions"
-d '{
"userPseudoId": "test_user"
}'
{
"name" : "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943" ,
"state" : "IN_PROGRESS" ,
"userPseudoId" : "test_user" ,
"startTime" : "2024-09-13T18:47:10.465311Z" ,
"endTime" : "2024-09-13T18:47:10.465311Z"
}
Anota el ID de sesión, los números al final del campo name:
en la respuesta JSON. En el resultado del ejemplo, el ID es 5386462384953257772
.
Necesitarás este ID en el siguiente paso.
Genera una respuesta y agrégala a una sesión en tu app:
curl -X POST \
-H "Authorization: Bearer $( gcloud auth print-access-token) " \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /servingConfigs/default_search:answer" \
-d '{
"query": { "text": "QUERY "},
"session": "projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions/SESSION_ID ",
"searchSpec":{ "searchParams": {"filter": "FILTER "} }
}'
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
QUERY
: Es una cadena de texto libre que contiene la pregunta o la búsqueda.
SESSION_ID
: El ID de la sesión que creaste en el paso 1. Estos son los dígitos al final del campo name:
, que se anotaron en el paso 2. Para una sesión, usa el mismo ID de sesión en cada turno.
FILTER
: Es un campo de texto para filtrar la búsqueda con una expresión de filtro. El valor predeterminado es una string vacía. La forma en que construyes tu filtro varía según si tienes datos no estructurados con metadatos, datos estructurados o datos de sitios web. Para obtener más información, consulta Filtra la búsqueda genérica de datos estructurados o no estructurados y Filtra la búsqueda de sitios web .
Ejemplo de comando y resultado
curl -X POST -H "Authorization: Bearer $( gcloud auth print-access-token) "
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/my-project-123/locations/global/collections/default_collection/engines/my-app/servingConfigs/default_search:answer"
-d '{
"query": { "text": "Compare bigquery with spanner database?"},
"session": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943",
}'
{
"answer" : {
"name" : "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943/answers/4861507376861383072" ,
"state" : "SUCCEEDED" ,
"answerText" : "BigQuery and Spanner are both powerful tools that can be used together to handle transactional and analytical workloads. Spanner is a fully managed relational database optimized for transactional workloads, while BigQuery is a serverless data warehouse designed for business agility. Spanner provides seamless replication across regions in Google Cloud and processes over 1 billion requests per second at peak. BigQuery analyzes over 110 terabytes of data per second. Users can leverage federated queries to read data from Spanner and write to a native BigQuery table. \n" ,
"steps" : [
{
"state" : "SUCCEEDED" ,
"description" : "Rephrase the query and search." ,
"actions" : [
{
"searchAction" : {
"query" : "Compare bigquery with spanner database?"
} ,
"observation" : {
"searchResults" : [
{
"document" : "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/ecc0e7547253f4ca3ff3328ce89995af" ,
"uri" : "https://cloud.google.com/blog/topics/developers-practitioners/how-spanner-and-bigquery-work-together-handle-transactional-and-analytical-workloads" ,
"title" : "How Spanner and BigQuery work together to handle transactional and analytical workloads | Google Cloud Blog" ,
"snippetInfo" : [
{
"snippet" : "Using Cloud \u003cb\u003eSpanner\u003c/b\u003e and \u003cb\u003eBigQuery\u003c/b\u003e also allows customers to build their \u003cb\u003edata\u003c/b\u003e clouds using Google Cloud, a unified, open approach to \u003cb\u003edata\u003c/b\u003e-driven transformation ..." ,
"snippetStatus" : "SUCCESS"
}
]
} ,
{
"document" : "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/d7e238f73608a860e00b752ef80e2941" ,
"uri" : "https://cloud.google.com/blog/products/databases/cloud-spanner-gets-stronger-with-bigquery-federated-queries" ,
"title" : "Cloud Spanner gets stronger with BigQuery-federated queries | Google Cloud Blog" ,
"snippetInfo" : [
{
"snippet" : "As enterprises compete for market share, their need for real-time insights has given rise to increased demand for transactional \u003cb\u003edatabases\u003c/b\u003e to support \u003cb\u003edata\u003c/b\u003e ..." ,
"snippetStatus" : "SUCCESS"
}
]
} ,
{
"document" : "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/e10a5a3c267dc61579e7c00fefe656eb" ,
"uri" : "https://cloud.google.com/blog/topics/developers-practitioners/replicating-cloud-spanner-bigquery-scale" ,
"title" : "Replicating from Cloud Spanner to BigQuery at scale | Google Cloud Blog" ,
"snippetInfo" : [
{
"snippet" : "... \u003cb\u003eSpanner data\u003c/b\u003e into \u003cb\u003eBigQuery\u003c/b\u003e for analytics. In this post, you will learn how to efficiently use this feature to replicate large tables with high throughput ..." ,
"snippetStatus" : "SUCCESS"
}
]
} ,
...
{
"document" : "projects/123456/locations/global/collections/default_collection/dataStores/my-data-store/branches/0/documents/8100ad36e1cac149eb9fc180a41d8f25" ,
"uri" : "https://cloud.google.com/blog/products/gcp/from-nosql-to-new-sql-how-spanner-became-a-global-mission-critical-database" ,
"title" : "How Spanner became a global, mission-critical database | Google Cloud Blog" ,
"snippetInfo" : [
{
"snippet" : "... SQL \u003cb\u003evs\u003c/b\u003e. NoSQL dichotomy may no longer be relevant." The \u 003cb\u 003eSpanner\u 003c/b\u 003e SQL query processor, while recognizable as a standard implementation, has unique ...",
" snippetStatus": " SUCCESS"
}
]
}
]
}
}
]
}
]
},
" session": {
" name": " projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943",
" state": " IN_PROGRESS",
" userPseudoId": " test_user",
" turns": [
{
" query": {
" queryId": " projects/123456/locations/global/questions/741830",
" text": " Compare bigquery with spanner database?"
},
" answer": " projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943/answers/4861507376861383072"
}
],
" startTime": " 2024 -09-13T18:47:10.465311Z",
" endTime": " 2024 -09-13T18:47:10.465311Z"
},
" answerQueryToken": " NMwKDAjFkpK3BhDU24uZAhIkNjZlNDIyZWYtMDAwMC0yMjVmLWIxMmQtZjQwMzA0M2FkYmNj"
}
Repite el paso 3 para cada búsqueda nueva en la sesión.
Cómo obtener una sesión del almacén de datos
En el siguiente comando, se muestra cómo llamar al método get
y obtener una sesión del almacén de datos.
REST
Para obtener una sesión de un almacén de datos, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X GET -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions/SESSION_ID "
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
SESSION_ID
: El ID de la sesión que deseas obtener.
Cómo borrar una sesión de la app
En el siguiente comando, se muestra cómo llamar al método delete
y borrar una sesión del almacén de datos.
De forma predeterminada, las sesiones que tienen más de 60 días se borran automáticamente.
Sin embargo, si quieres borrar una sesión en particular, por ejemplo, si
contiene contenido sensible, usa esta llamada a la API para borrarla.
REST
Para borrar una sesión de una app, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X DELETE -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions/SESSION_ID "
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
SESSION_ID
: El ID de la sesión que deseas borrar.
Ejemplo de comando y resultado
curl -X DELETE -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943"
{}
Cómo actualizar una sesión
Existen varios motivos por los que podrías querer actualizar una sesión. Por ejemplo, puedes hacer lo siguiente:
Cómo marcar una sesión como completada
Cómo combinar los mensajes de una sesión en otra
Cambia el seudo-ID de un usuario
En el siguiente comando, se muestra cómo llamar al método patch
y actualizar una sesión en el almacén de datos.
REST
Para actualizar una sesión desde una app, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X PATCH \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions/SESSION_ID ?updateMask=state" \
-d '{
"state": "NEW_STATE "
}'
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
SESSION_ID
: El ID de la sesión que
deseas actualizar.
NEW_STATE
: Es el valor nuevo del estado, por
ejemplo, IN_PROGRESS
.
Ejemplo de comando y resultado
curl -X PATCH -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943?updateMask=state"
-d '{
"state": "IN_PROGRESS"
}'
{
"name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943",
"state": "IN_PROGRESS",
"userPseudoId": "test_user",
"turns": [
{
"query": {
"queryId": "projects/123456/locations/global/questions/741830",
"text": "Compare bigquery with spanner database?"
},
"answer": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943/answers/4861507376861383072"
}
],
"startTime": "2024-09-13T18:47:10.465311Z",
"endTime": "2024-09-13T18:49:41.579151Z"
}
En este ejemplo, se cambia el estado de la sesión a abierta (en curso). Sigue un patrón similar para actualizar el userPseudoId
.
Muestra todas las sesiones
En el siguiente comando, se muestra cómo llamar al método list
y enumerar las sesiones en el almacén de datos.
REST
Para enumerar las sesiones de una app, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions"
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
Ejemplo de comando y resultado
curl -X GET -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/engines/my-app/sessions"
{
"sessions": [
{
"name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/10000135306311111817",
"state": "IN_PROGRESS",
"turns": [
{
"query": {
"queryId": "projects/123456/locations/global/questions/10000135306311114276",
"text": "bugs reported by tiktok on grounding"
}
}
],
"startTime": "2024-09-03T00:38:40.338623Z",
"endTime": "2024-09-03T00:38:40.338623Z"
},
{
"name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/10000827040519035859",
"state": "IN_PROGRESS",
"turns": [
{
"query": {
"queryId": "projects/123456/locations/global/questions/10000827040519033518",
"text": "GDM models"
}
}
],
"startTime": "2024-07-19T15:53:06.521775Z"
},
{
"name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/10003910515245149877",
"state": "IN_PROGRESS",
"turns": [
{
"query": {
"queryId": "projects/123456/locations/global/questions/10003910515245148378",
"text": "gyorgyattila"
},
"answer": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/10003910515245149877/answers/17036357111873257990"
}
],
"startTime": "2024-08-08T11:40:04.632463Z",
"endTime": "2024-08-08T11:40:04.632463Z"
},
...
{
"name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/10198752942940073431",
"state": "IN_PROGRESS",
"turns": [
{
"query": {
"queryId": "projects/123456/locations/global/questions/10198752942940071818",
"text": "hello"
},
"answer": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/10198752942940073431/answers/13411441797796265380"
}
],
"startTime": "2024-08-14T17:30:21.203439Z",
"endTime": "2024-08-14T17:30:21.203439Z"
}
],
"nextPageToken": "IDEDgIwL_vuieLC"
}
La respuesta contiene una lista de sesiones y el nextPageToken. Si no se muestra un nextPageToken, significa que no hay más sesiones para mostrar. El tamaño de página predeterminado es 50.
Cómo enumerar las sesiones de un usuario
En el siguiente comando, se muestra cómo llamar al método list
para enumerar las sesiones asociadas con un usuario o visitante.
REST
Para obtener una lista de las sesiones asociadas con un usuario o visitante, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions?filter=userPseudoId=USER_PSEUDO_ID "
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
USER_PSEUDO_ID
: Es el ID seudónimo del usuario cuyas sesiones deseas enumerar.
Ejemplo de comando y resultado
curl -X GET -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/engines/my-app/sessions?filter=userPseudoId=test_user"
{
"sessions": [
{
"name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943",
"state": "IN_PROGRESS",
"userPseudoId": "test_user",
"turns": [
{
"query": {
"queryId": "projects/123456/locations/global/questions/741830",
"text": "Compare bigquery with spanner database?"
},
"answer": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943/answers/4861507376861383072"
}
],
"startTime": "2024-09-13T18:47:10.465311Z",
"endTime": "2024-09-13T18:49:41.579151Z"
}
]
}
En este ejemplo, hay una sesión asociada con test_user. Se muestran las consultas y respuestas de la sesión.
Cómo enumerar las sesiones de un usuario y un estado
En el siguiente comando, se muestra cómo llamar al método list
para enumerar las sesiones en un estado determinado para un usuario en particular.
REST
Para mostrar una lista de las sesiones de un usuario que están abiertas o cerradas y asociadas con un usuario o visitante determinado, haz lo siguiente:
Ejecuta el siguiente comando de curl:
curl -X GET -H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
"https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID /locations/global/collections/default_collection/engines/APP_ID /sessions?filter=userPseudoId=USER_PSEUDO_ID %20AND%20state=STATE "
Reemplaza lo siguiente:
PROJECT_ID
: El ID de tu proyecto de Google Cloud .
APP_ID
: El ID de la app de Vertex AI Search.
USER_PSEUDO_ID
: Es el ID seudónimo del usuario cuyas sesiones deseas enumerar.
STATE
: Es el estado de la sesión: STATE_UNSPECIFIED
(cerrado o desconocido) o IN_PROGRESS
(abierto).
Ejemplo de comando y resultado
curl -X GET -H "Authorization: Bearer $(gcloud auth print-access-token)"
-H "Content-Type: application/json"
"https://discoveryengine.googleapis.com/v1/projects/123456/locations/global/collections/default_collection/engines/my-app/sessions?filter=userPseudoId=test_user%20AND%20state=IN_PROGRESS"
{
"sessions": [
{
"name": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943",
"state": "IN_PROGRESS",
"userPseudoId": "test_user",
"turns": [
{
"query": {
"queryId": "projects/123456/locations/global/questions/741830",
"text": "Compare bigquery with spanner database?"
},
"answer": "projects/123456/locations/global/collections/default_collection/engines/my-app/sessions/16002628354770206943/answers/4861507376861383072"
}
],
"startTime": "2024-09-13T18:47:10.465311Z",
"endTime": "2024-09-13T18:49:41.579151Z"
}
]
}
El resultado esperado es una respuesta vacía.