使用 BigQuery 資料來源的撰寫內容,引導代理程式行為

本頁面說明如何為連結至 BigQuery 資料的 Conversational Analytics API 資料代理程式,編寫有效的提示。這些提示是您使用 system_instruction 參數定義為字串的撰寫內容。

系統指令主要元件範例

以下各節提供 BigQuery 系統指令主要元件的範例。這些鍵包括:

如要瞭解這些重要元件,請參閱「使用撰寫的內容引導代理程式行為」說明文件頁面。

使用 tables 描述資料

下列 YAML 程式碼區塊顯示表格 bigquery-public-data.thelook_ecommerce.orderstables 鍵基本結構:

- tables:
    - table:
        - name: bigquery-public-data.thelook_ecommerce.orders
        - description: Data for customer orders in The Look fictitious e-commerce store.
        - synonyms:
            - sales
            - orders_data
        - tags:
            - ecommerce
            - transaction

使用 fields 說明常用欄位

下列 YAML 程式碼範例說明 orders 表格的 order_idstatuscreated_atnum_of_itemsearnings 等重要欄位:

- tables:
    - table:
        - name: bigquery-public-data.thelook_ecommerce.orders
        - fields:
            - field:
                - name: order_id
                - description: The unique identifier for each customer order.
            - field:
                - name: user_id
                - description: The unique identifier for each customer.
            - field:
                - name: status
                - description: The current status of the order.
                - sample_values:
                    - complete
                    - shipped
                    - returned
            - field:
                - name: created_at
                - description: The timestamp when the order was created.
            - field:
                - name: num_of_items
                - description: The total number of items in the order.
                - aggregations:
                    - sum
                    - avg
            - field:
                - name: earnings
                - description: The sales amount for the order.
                - aggregations:
                    - sum
                    - avg

使用 measures 定義業務指標

舉例來說,您可以將 profit 評估指標定義為收益減去費用的計算結果,如下所示:

- tables:
    - table:
        - name: bigquery-public-data.thelook_ecommerce.orders
        - measures:
            - measure:
                - name: profit
                - description: Raw profit (earnings minus cost).
                - exp: earnings - cost
                - synonyms: gains

使用 golden_queries 提高準確度

舉例來說,您可以為 orders 資料表中的資料定義常見分析的金鑰查詢,如下所示:

- tables:
    - table:
        - golden_queries:
            - golden_query:
                - natural_language_query: How many orders are there?
                - sql_query: SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
            - golden_query:
                - natural_language_query: How many orders were shipped?
                - sql_query: >-
                    SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
                    WHERE status = 'shipped'

使用 golden_action_plans 規劃多步驟工作

舉例來說,您可以定義動作計畫,依年齡層顯示訂單明細,並納入 SQL 查詢和視覺化相關步驟的詳細資料:

- tables:
    - table:
        - golden_action_plans:
            - golden_action_plan:
                - natural_language_query: Show me the number of orders broken down by age group.
                - action_plan:
                    - step: >-
                        Run a SQL query that joins the table
                        sqlgen-testing.thelook_ecommerce.orders and
                        sqlgen-testing.thelook_ecommerce.users to get a
                        breakdown of order count by age group.
                    - step: >-
                        Create a vertical bar plot using the retrieved data,
                        with one bar per age group.

使用 relationships 定義資料表聯結

舉例來說,您可以定義 bigquery-public-data.thelook_ecommerce.orders 資料表和 bigquery-public-data.thelook_ecommerce.users 資料表之間的 orders_to_user 關係,如下所示:

- relationships:
    - relationship:
        - name: orders_to_user
        - description: >-
            Connects customer order data to user information with the user_id and id fields to allow an aggregated view of sales by customer demographics.
        - relationship_type: many-to-one
        - join_type: left
        - left_table: bigquery-public-data.thelook_ecommerce.orders
        - right_table: bigquery-public-data.thelook_ecommerce.users
        - relationship_columns:
            - left_column: user_id
            - right_column: id

使用 glossaries 解釋企業字詞

舉例來說,您可以根據特定業務情境,定義常見業務狀態和「OMPF」等字詞,如下所示:

- glossaries:
    - glossary:
        - term: complete
        - description: Represents an order status where the order has been completed.
        - synonyms: 'finish, done, fulfilled'
    - glossary:
        - term: shipped
        - description: Represents an order status where the order has been shipped to the customer.
    - glossary:
        - term: returned
        - description: Represents an order status where the customer has returned the order.
    - glossary:
        - term: OMPF
        - description: Order Management and Product Fulfillment

使用 additional_descriptions 納入其他操作說明

舉例來說,您可以使用 additional_descriptions 鍵提供機構組織的相關資訊,如下所示:

- additional_descriptions:
    - text: All the sales data pertains to The Look, a fictitious ecommerce store.
    - text: 'Orders can be of three categories: food, clothes, and electronics.'

範例:BigQuery 中的系統指令

以下範例顯示虛構的銷售分析師代理程式的範例系統指令:

- system_instruction: >-
    You are an expert sales analyst for a fictitious ecommerce store. You will answer questions about sales, orders, and customer data. Your responses should be concise and data-driven.
- tables:
    - table:
        - name: bigquery-public-data.thelook_ecommerce.orders
        - description: Data for orders in The Look, a fictitious ecommerce store.
        - synonyms: sales
        - tags: 'sale, order, sales_order'
        - fields:
            - field:
                - name: order_id
                - description: The unique identifier for each customer order.
            - field:
                - name: user_id
                - description: The unique identifier for each customer.
            - field:
                - name: status
                - description: The current status of the order.
                - sample_values:
                    - complete
                    - shipped
                    - returned
            - field:
                - name: created_at
                - description: >-
                    The date and time at which the order was created in timestamp
                    format.
            - field:
                - name: returned_at
                - description: >-
                    The date and time at which the order was returned in timestamp
                    format.
            - field:
                - name: num_of_items
                - description: The total number of items in the order.
                - aggregations: 'sum, avg'
            - field:
                - name: earnings
                - description: The sales revenue for the order.
                - aggregations: 'sum, avg'
            - field:
                - name: cost
                - description: The cost for the items in the order.
                - aggregations: 'sum, avg'
        - measures:
            - measure:
                - name: profit
                - description: Raw profit (earnings minus cost).
                - exp: earnings - cost
                - synonyms: gains
        - golden_queries:
            - golden_query:
                - natural_language_query: How many orders are there?
                - sql_query: SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
            - golden_query:
                - natural_language_query: How many orders were shipped?
                - sql_query: >-
                    SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
                    WHERE status = 'shipped'
        - golden_action_plans:
            - golden_action_plan:
                - natural_language_query: Show me the number of orders broken down by age group.
                - action_plan:
                    - step: >-
                        Run a SQL query that joins the table
                        sqlgen-testing.thelook_ecommerce.orders and
                        sqlgen-testing.thelook_ecommerce.users to get a
                        breakdown of order count by age group.
                    - step: >-
                        Create a vertical bar plot using the retrieved data,
                        with one bar per age group.
    - table:
        - name: bigquery-public-data.thelook_ecommerce.users
        - description: Data for users in The Look, a fictitious ecommerce store.
        - synonyms: customers
        - tags: 'user, customer, buyer'
        - fields:
            - field:
                - name: id
                - description: The unique identifier for each user.
            - field:
                - name: first_name
                - description: The first name of the user.
                - tag: person
                - sample_values: 'alex, izumi, nur'
            - field:
                - name: last_name
                - description: The first name of the user.
                - tag: person
                - sample_values: 'warmer, stilles, smith'
            - field:
                - name: age_group
                - description: The age demographic group of the user.
                - sample_values:
                    - 18-24
                    - 25-34
                    - 35-49
                    - 50+
            - field:
                - name: email
                - description: The email address of the user.
                - tag: contact
                - sample_values: '222larabrown@gmail.com, cloudysanfrancisco@gmail.com'
        - golden_queries:
            - golden_query:
                - natural_language_query: How many unique customers are there?
                - sql_query: >-
                    SELECT COUNT(DISTINCT id) FROM
                    bigquery-public-data.thelook_ecommerce.users
            - golden_query:
                - natural_language_query: How many users in the 25-34 age group have a cymbalgroup email address?
                - sql_query: >-
                    SELECT COUNT(DISTINCT id) FROM
                    bigquery-public-data.thelook_ecommerce.users WHERE users.age_group =
                    '25-34' AND users.email LIKE '%@cymbalgroup.com';
    - relationships:
        - relationship:
            - name: orders_to_user
            - description: >-
                Connects customer order data to user information with the user_id and id fields to allow an aggregated view of sales by customer demographics.
            - relationship_type: many-to-one
            - join_type: left
            - left_table: bigquery-public-data.thelook_ecommerce.orders
            - right_table: bigquery-public-data.thelook_ecommerce.users
            - relationship_columns:
                - left_column: user_id
                - right_column: id
- glossaries:
    - glossary:
        - term: complete
        - description: Represents an order status where the order has been completed.
        - synonyms: 'finish, done, fulfilled'
    - glossary:
        - term: shipped
        - description: Represents an order status where the order has been shipped to the customer.
    - glossary:
        - term: returned
        - description: Represents an order status where the customer has returned the order.
    - glossary:
        - term: OMPF
        - description: Order Management and Product Fulfillment
- additional_descriptions:
    - text: All the sales data pertains to The Look, a fictitious ecommerce store.
    - text: 'Orders can be of three categories: food, clothes, and electronics.'