Toolbox - BigQuery로 항목 내보내기
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
처리된 문서 (또는 문서 샤드)의 항목을 BigQuery 테이블로 내보냅니다.
더 살펴보기
이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.
코드 샘플
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis code sample demonstrates how to export entities extracted from a processed document or document shards directly to a BigQuery table.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves using the Document AI Toolbox client library to access and manipulate document data.\u003c/p\u003e\n"],["\u003cp\u003eAuthentication to Document AI is required, and users should set up Application Default Credentials for local development.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eentities_to_bigquery\u003c/code\u003e function from the document class handles the data transfer to a target BigQuery dataset and table.\u003c/p\u003e\n"],["\u003cp\u003eThe code allows users to also use the \u003ccode\u003eform_fields_to_bigquery\u003c/code\u003e function to export the form fields instead of the entities.\u003c/p\u003e\n"]]],[],null,["# Toolbox - Export entities to BigQuery\n\nExport entities from a processed document (or document shards) to a BigQuery table.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Document AI Toolbox client libraries](/document-ai/docs/toolbox)\n- [Handle processing response](/document-ai/docs/handle-response)\n\nCode sample\n-----------\n\n### Python\n\n\nFor more information, see the\n[Document AI Python API\nreference documentation](/python/docs/reference/documentai/latest).\n\n\nTo authenticate to Document AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n from google.cloud.documentai_toolbox import document\n\n # TODO(developer): Uncomment these variables before running the sample.\n # Given a document.proto or sharded document.proto in path gs://bucket/path/to/folder\n # gcs_bucket_name = \"bucket\"\n # gcs_prefix = \"path/to/folder\"\n # dataset_name = \"test_dataset\"\n # table_name = \"test_table\"\n # project_id = \"YOUR_PROJECT_ID\"\n\n\n def entities_to_bigquery_sample(\n gcs_bucket_name: str,\n gcs_prefix: str,\n dataset_name: str,\n table_name: str,\n project_id: str,\n ) -\u003e None:\n wrapped_document = document.Document.from_gcs(\n gcs_bucket_name=gcs_bucket_name, gcs_prefix=gcs_prefix\n )\n\n job = wrapped_document.entities_to_bigquery(\n dataset_name=dataset_name, table_name=table_name, project_id=project_id\n )\n\n # Also supported:\n # job = wrapped_document.form_fields_to_bigquery(\n # dataset_name=dataset_name, table_name=table_name, project_id=project_id\n # )\n\n print(\"Document entities loaded into BigQuery\")\n print(f\"Job ID: {job.job_id}\")\n print(f\"Table: {job.destination.path}\")\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=documentai)."]]