전문 스플리터/분류기 프로세서에 온라인 처리 요청을 보내고 응답을 파싱합니다. 문서 분류 및 페이지 범위를 추출하여 인쇄합니다.
더 살펴보기
이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.
코드 샘플
Java
자세한 내용은 Document AI Java API 참고 문서를 참고하세요.
Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import com.google.cloud.documentai.v1beta3.Document;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1beta3.ProcessRequest;
import com.google.cloud.documentai.v1beta3.ProcessResponse;
import com.google.cloud.documentai.v1beta3.RawDocument;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;
public class ProcessSplitterDocument {
public static void processSplitterDocument()
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String projectId = "your-project-id";
String location = "your-project-location"; // Format is "us" or "eu".
String processerId = "your-processor-id";
String filePath = "path/to/input/file.pdf";
processSplitterDocument(projectId, location, processerId, filePath);
}
public static void processSplitterDocument(
String projectId, String location, String processorId, String filePath)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// Initialize client that will be used to send requests. This client only needs
// to be created
// once, and can be reused for multiple requests. After completing all of your
// requests, call
// the "close" method on the client to safely clean up any remaining background
// resources.
String endpoint = String.format("%s-documentai.googleapis.com:443", location);
DocumentProcessorServiceSettings settings =
DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
// The full resource name of the processor, e.g.:
// projects/project-id/locations/location/processor/processor-id
// You must create new processors in the Cloud Console first
String name =
String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);
// Read the file.
byte[] imageFileData = Files.readAllBytes(Paths.get(filePath));
// Convert the image data to a Buffer and base64 encode it.
ByteString content = ByteString.copyFrom(imageFileData);
RawDocument document =
RawDocument.newBuilder().setContent(content).setMimeType("application/pdf").build();
// Configure the process request.
ProcessRequest request =
ProcessRequest.newBuilder().setName(name).setRawDocument(document).build();
// Recognizes text entities in the PDF document
ProcessResponse result = client.processDocument(request);
Document documentResponse = result.getDocument();
System.out.println("Document processing complete.");
// Read the splitter output from the document splitter processor:
// https://cloud.google.com/document-ai/docs/processors-list#processor_doc-splitter
// This processor only provides text for the document and information on how
// to split the document on logical boundaries. To identify and extract text,
// form elements, and entities please see other processors like the OCR, form,
// and specalized processors.
List<Document.Entity> entities = documentResponse.getEntitiesList();
System.out.printf("Found %d subdocuments:\n", entities.size());
for (Document.Entity entity : entities) {
float entityConfidence = entity.getConfidence();
String pagesRangeText = pageRefsToString(entity.getPageAnchor().getPageRefsList());
String subdocumentType = entity.getType();
if (subdocumentType.isEmpty()) {
System.out.printf(
"%.2f%% confident that %s a subdocument.\n", entityConfidence * 100, pagesRangeText);
} else {
System.out.printf(
"%.2f%% confident that %s a '%s' subdocument.\n",
entityConfidence * 100, pagesRangeText, subdocumentType);
}
}
}
}
// Converts page reference(s) to a string describing the page or page range.
private static String pageRefsToString(List<Document.PageAnchor.PageRef> pageRefs) {
if (pageRefs.size() == 1) {
return String.format("page %d is", pageRefs.get(0).getPage() + 1);
} else {
long start = pageRefs.get(0).getPage() + 1;
long end = pageRefs.get(1).getPage() + 1;
return String.format("pages %d to %d are", start, end);
}
}
}
Node.js
자세한 내용은 Document AI Node.js API 참고 문서를 참고하세요.
Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';
const {DocumentProcessorServiceClient} =
require('@google-cloud/documentai').v1beta3;
// Instantiates a client
const client = new DocumentProcessorServiceClient();
async function processDocument() {
// The full resource name of the processor, e.g.:
// projects/project-id/locations/location/processor/processor-id
// You must create new processors in the Cloud Console first
const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;
// Read the file into memory.
const fs = require('fs').promises;
const imageFile = await fs.readFile(filePath);
// Convert the image data to a Buffer and base64 encode it.
const encodedImage = Buffer.from(imageFile).toString('base64');
const request = {
name,
rawDocument: {
content: encodedImage,
mimeType: 'application/pdf',
},
};
// Recognizes text entities in the PDF document
const [result] = await client.processDocument(request);
console.log('Document processing complete.');
// Read fields specificly from the specalized US drivers license processor:
// https://cloud.google.com/document-ai/docs/processors-list#processor_us-driver-license-parser
// retriving data from other specalized processors follow a similar pattern.
// For a complete list of processors see:
// https://cloud.google.com/document-ai/docs/processors-list
//
// OCR and other data is also present in the quality processor's response.
// Please see the OCR and other samples for how to parse other data in the
// response.
const {document} = result;
console.log(`Found ${document.entities.length} subdocuments:`);
for (const entity of document.entities) {
const conf = entity.confidence * 100;
const pagesRange = pageRefsToRange(entity.pageAnchor.pageRefs);
if (entity.type !== '') {
console.log(
`${conf.toFixed(2)}% confident that ${pagesRange} a "${
entity.type
}" subdocument.`
);
} else {
console.log(
`${conf.toFixed(2)}% confident that ${pagesRange} a subdocument.`
);
}
}
}
// Converts a page ref to a string describing the page or page range.
const pageRefsToRange = pageRefs => {
if (pageRefs.length === 1) {
const num = parseInt(pageRefs[0].page) + 1 || 1;
return `page ${num} is`;
} else {
const start = parseInt(pageRefs[0].page) + 1 || 1;
const end = parseInt(pageRefs[1].page) + 1;
return `pages ${start} to ${end} are`;
}
};
Python
자세한 내용은 Document AI Python API 참고 문서를 참고하세요.
Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
from typing import Optional, Sequence
from google.api_core.client_options import ClientOptions
from google.cloud import documentai
# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_PROCESSOR_LOCATION" # Format is "us" or "eu"
# processor_id = "YOUR_PROCESSOR_ID" # Create processor before running sample
# processor_version = "rc" # Refer to https://cloud.google.com/document-ai/docs/manage-processor-versions for more information
# file_path = "/path/to/local/pdf"
# mime_type = "application/pdf" # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types
def process_document_splitter_sample(
project_id: str,
location: str,
processor_id: str,
processor_version: str,
file_path: str,
mime_type: str,
) -> None:
# Online processing request to Document AI
document = process_document(
project_id, location, processor_id, processor_version, file_path, mime_type
)
# Read the splitter output from a document splitter/classifier processor:
# e.g. https://cloud.google.com/document-ai/docs/processors-list#processor_procurement-document-splitter
# This processor only provides text for the document and information on how
# to split the document on logical boundaries. To identify and extract text,
# form elements, and entities please see other processors like the OCR, form,
# and specalized processors.
print(f"Found {len(document.entities)} subdocuments:")
for entity in document.entities:
conf_percent = f"{entity.confidence:.1%}"
pages_range = page_refs_to_string(entity.page_anchor.page_refs)
# Print subdocument type information, if available
if entity.type_:
print(
f"{conf_percent} confident that {pages_range} a '{entity.type_}' subdocument."
)
else:
print(f"{conf_percent} confident that {pages_range} a subdocument.")
def page_refs_to_string(
page_refs: Sequence[documentai.Document.PageAnchor.PageRef],
) -> str:
"""Converts a page ref to a string describing the page or page range."""
pages = [str(int(page_ref.page) + 1) for page_ref in page_refs]
if len(pages) == 1:
return f"page {pages[0]} is"
else:
return f"pages {', '.join(pages)} are"
def process_document(
project_id: str,
location: str,
processor_id: str,
processor_version: str,
file_path: str,
mime_type: str,
process_options: Optional[documentai.ProcessOptions] = None,
) -> documentai.Document:
# You must set the `api_endpoint` if you use a location other than "us".
client = documentai.DocumentProcessorServiceClient(
client_options=ClientOptions(
api_endpoint=f"{location}-documentai.googleapis.com"
)
)
# The full resource name of the processor version, e.g.:
# `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
# You must create a processor before running this sample.
name = client.processor_version_path(
project_id, location, processor_id, processor_version
)
# Read the file into memory
with open(file_path, "rb") as image:
image_content = image.read()
# Configure the process request
request = documentai.ProcessRequest(
name=name,
raw_document=documentai.RawDocument(content=image_content, mime_type=mime_type),
# Only supported for Document OCR processor
process_options=process_options,
)
result = client.process_document(request=request)
# For a full list of `Document` object attributes, reference this page:
# https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
return result.document
다음 단계
다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저 참조하기