将敏感数据保护检查作业结果发送到 Security Command Center

本指南将详细介绍如何在 Cloud Storage、Datastore 模式 (Datastore) 下的 Firestore 或 BigQuery 中检查数据,以及如何将检查结果发送到 Security Command Center。

对于 BigQuery 数据,您还可以执行性能分析,这与检查操作不同。您还可以将数据分析文件发送到 Security Command Center。如需了解详情,请参阅将数据分析文件发布到 Security Command Center

概览

您可以通过 Security Command Center 收集有关安全威胁的数据、识别安全威胁并采取相应措施,以避免造成业务损害或损失。借助 Security Command Center,您可以从单个集中式信息中心执行多项与安全相关的操作。

敏感数据保护与 Security Command Center 进行了内置集成。当您使用敏感数据保护操作检查 Google Cloud Storage 存储区中是否存在敏感数据时,它可以将结果直接发送到 Security Command Center 信息中心。它们显示在其他安全指标旁边。

通过执行本指南中的步骤,您将完成以下操作:

  • 启用 Security Command Center 和敏感数据保护。
  • 设置敏感数据保护以检查 Google Cloud 存储区,包括 Cloud Storage 存储桶、BigQuery 表或 Datastore 种类。
  • 配置敏感数据保护扫描,以将检查作业结果发送到 Security Command Center。

如需详细了解 Security Command Center,请参阅 Security Command Center 文档

如果您想将发现扫描(而非检查作业)的结果发送到 Security Command Center,请改为参阅对组织、文件夹项目进行分析的文档。

费用

在本文档中,您将使用 Google Cloud 的以下收费组件:

  • Sensitive Data Protection
  • Cloud Storage
  • BigQuery
  • Datastore

您可使用价格计算器根据您的预计使用情况来估算费用。 Google Cloud 新用户可能有资格申请免费试用

准备工作

您必须先完成以下操作,才能将敏感数据保护扫描结果发送到 Security Command Center:

  • 第 1 步:设置 Google Cloud 存储区。
  • 第 2 步:设置 Identity and Access Management (IAM) 角色。
  • 第 3 步:启用 Security Command Center。
  • 第 4 步:启用敏感数据保护。
  • 第 5 步:将敏感数据保护功能作为 Security Command Center 的安全来源启用。

设置这些组件的步骤将在以下几个部分中介绍。

第 1 步:设置 Google Cloud 存储区

选择是要扫描您自己的 Google Cloud 存储区还是示例存储区。本主题针对这两种场景提供了说明。

扫描您自己的数据

如果要扫描您自己现有的 Cloud Storage 存储分区、BigQuery 表格或 Datastore 种类,请先打开存储区所在的项目。在后续步骤中,您将为此项目及其组织启用 Security Command Center 和敏感数据保护。

打开要使用的项目后,继续执行第 2 步以设置一些 IAM 角色

扫描样本数据

如果要扫描测试数据集,请先确保您已设置结算账号,然后创建一个新项目。要完成此步骤,您必须拥有 IAM 的 Project Creator 角色。详细了解 IAM 角色

  1. 如果您尚未配置结算,请设置结算账号。

    了解如何启用结算功能

  2. 前往 Google Cloud 控制台中的新建项目页面。

    转到“新建项目”

  3. 结算账号下拉列表中,选择项目的结算账号。
  4. 组织下拉列表中,选择要在其中创建项目的组织。
  5. 位置下拉列表中,选择要在其中创建项目的组织或文件夹。

接下来,下载并存储样本数据:

  1. 前往 GitHub 上的 Cloud Run functions 教程存储库
  2. 点击克隆或下载,然后点击下载 ZIP
  3. 解压缩下载的 ZIP 文件。
  4. 前往 Google Cloud 控制台中的 Storage 浏览器页面。

    转到 Cloud Storage

  5. 点击创建存储分区
  6. 创建存储分区页面上,为存储分区指定唯一的名称,然后点击创建
  7. 存储分区详细信息页面上,点击上传文件夹
  8. 转到您解压缩的 dlp-cloud-functions-tutorials-master 文件夹,将其打开,然后选择 sample_data 文件夹。点击上传按钮将该文件夹的内容上传到 Cloud Storage。

请记下您为 Cloud Storage 存储分区指定的名称,以备后用。文件上传完成后,您可以继续下一步操作。

第 2 步:设置 IAM 角色

如需使用敏感数据保护将扫描结果发送到 Security Command Center,您需要 Security Center AdminSensitive Data Protection Jobs Editor IAM 角色。本部分介绍如何添加这些角色。要完成此部分,您必须拥有 Organization Administrator IAM 角色。

  1. 转到 IAM 页面。

    进入 IAM

  2. 按主账号查看标签页中,找到您的 Google 账号,然后点击 修改主账号
  3. 添加 Security Center AdminSensitive Data Protection Jobs Editor 角色:

    1. 修改权限面板中,点击添加其他角色
    2. 选择角色列表中,搜索并选择 Security Center Admin
    3. 点击添加其他角色
    4. 选择角色列表中,搜索并选择 DLP Jobs Editor
    5. 点击保存

您现在拥有组织的 Sensitive Data Protection Jobs Editor 和 Security Center Admin 角色。拥有了这些角色后,您便能够完成本主题其余部分的任务。

第 3 步:启用 Security Command Center

  1. 前往 Google Cloud 控制台中的 Security Command Center 页面。

    进入 Security Command Center

  2. 组织下拉列表中,选择要为其启用敏感数据保护的组织,然后点击选择

  3. 在显示的启用资源发现页面上,选择当前和未来的所有项目,然后点击启用。随即将显示一条消息,说明 Sensitive Data Protection 正在启动资源发现进程。

资源发现完成后,敏感数据保护将显示您支持的 Google Cloud 资源。资源发现过程可能需要几分钟时间,您可能需要刷新页面才能显示发现的资源。

如需详细了解如何启用 Security Command Center,请参阅 Security Command Center 文档

第 4 步:启用敏感数据保护

为要扫描的项目启用敏感数据保护。该项目必须位于您已为其启用 Security Command Center 的同一组织内。如需使用 Google Cloud 控制台启用 Sensitive Data Protection,请执行以下操作:

  1. 在 Google Cloud 控制台中,前往启用对 API 的访问权限页面。

    启用 API

  2. 在工具栏中,选择本指南第 1 步中的项目。项目必须包含要扫描的 Cloud Storage 存储分区、BigQuery 表格或 Datastore 种类。
  3. 点击下一步
  4. 点击启用

您的项目现已启用敏感数据保护功能。

第 5 步:将敏感数据保护作为 Security Command Center 的集成服务启用

如需在 Security Command Center 中查看敏感数据保护扫描结果,请将敏感数据保护作为集成服务启用。如需了解详情,请参阅 Security Command Center 文档中的添加 Google Cloud 集成服务

敏感数据保护的发现结果会显示在 Security Command Center 的发现结果页面上。

配置并运行 Sensitive Data Protection 检查扫描

在本部分中,您将配置并运行敏感数据保护检查作业。

您在此配置的检查作业会指示敏感数据保护扫描存储在 Cloud Storage 中的样本数据或存储在 Cloud Storage、Datastore 或 BigQuery 中的您自己的数据。您指定的作业配置也是您指示敏感数据保护将其扫描结果保存到 Security Command Center 的位置。

第 1 步:记下您的项目标识符

  1. 前往 Google Cloud 控制台。

    转到 Google Cloud 控制台

  2. 点击选择
  3. 请选择:下拉列表中,选择您已为其启用 Security Command Center 的组织。
  4. ID 下方,复制您要扫描的数据所在项目的项目 ID。
  5. 名称下方,点击项目以将其选中。

第 2 步:打开 APIs Explorer 并配置作业

  1. 点击以下按钮,在 dlpJobs.create 方法的参考页面上转到 API Explorer:

    打开 API Explorer

  2. 父级框中,输入以下内容,其中 PROJECT_ID 是您在第 1 步中记下的项目 ID:
    projects/PROJECT_ID

根据您使用的是 Cloud Storage 存储分区中的样本数据,还是存储在 Cloud Storage、Datastore 或 BigQuery 中的您自己的数据,将请求正文字段的内容替换为下面对应的 JSON。

样本数据

如果您创建了 Cloud Storage 存储桶来存储样本数据,请复制以下 JSON,然后将其粘贴到请求正文字段中。将 BUCKET_NAME 替换为您为 Cloud Storage 存储分区指定的名称:

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://BUCKET_NAME/**"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"EMAIL_ADDRESS"
        },
        {
          "name":"PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "includeQuote":true,
      "minLikelihood":"UNLIKELY",
      "limits":{
        "maxFindingsPerRequest":100
      }
    },
    "actions":[
      {
        "publishSummaryToCscc":{

        }
      }
    ]
  }
}

Cloud Storage 数据

如需扫描您自己的 Cloud Storage 存储分区,请复制以下 JSON 并将其粘贴到请求正文字段中。

PATH_NAME 替换为您要扫描的位置的路径。如需以递归方式扫描,请用两个星号结束路径,例如 gs://path_to_files/**。如需扫描某个特定目录(不扫描更深层次的目录),请用一个星号结束路径,例如 gs://path_to_files/*

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://PATH_NAME"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"EMAIL_ADDRESS"
        },
        {
          "name":"PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "includeQuote":true,
      "minLikelihood":"UNLIKELY",
      "limits":{
        "maxFindingsPerRequest":100
      }
    },
    "actions":[
      {
        "publishSummaryToCscc":{

        }
      }
    ]
  }
}

如需详细了解可用的扫描选项,请参阅检查存储空间和数据库中是否存在敏感数据

Datastore 数据

如需扫描保存在 Datastore 中的您自己的数据,请复制以下 JSON 并将其粘贴到请求正文字段中。

DATASTORE_KIND 替换为 Datastore 种类的名称。您也可以分别用命名空间和项目标识符替换 NAMESPACE_IDPROJECT_ID,或者如果需要,可以彻底移除 "partitionID"

{
  "inspectJob":{
    "storageConfig":{
      "datastoreOptions":{
        "kind":{
          "name":"DATASTORE_KIND"
        },
        "partitionId":{
          "namespaceId":"NAMESPACE_ID",
          "projectId":"PROJECT_ID"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"EMAIL_ADDRESS"
        },
        {
          "name":"PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "includeQuote":true,
      "minLikelihood":"UNLIKELY",
      "limits":{
        "maxFindingsPerRequest":100
      }
    },
    "actions":[
      {
        "publishSummaryToCscc":{

        }
      }
    ]
  }
}

如需详细了解可用的扫描选项,请参阅检查存储空间和数据库中是否存在敏感数据

BigQuery 数据

如需扫描您自己的 BigQuery 表格,请复制以下 JSON 并将其粘贴到请求正文字段中。

PROJECT_IDBIGQUERY_DATASET_NAMEBIGQUERY_TABLE_NAME 分别替换为项目 ID、BigQuery 数据集和表格名称。

{
  "inspectJob":
  {
    "storageConfig":
    {
      "bigQueryOptions":
      {
        "tableReference":
        {
          "projectId": "PROJECT_ID",
          "datasetId": "BIGQUERY_DATASET_NAME",
          "tableId": "BIGQUERY_TABLE_NAME"
        }
      }
    },
    "inspectConfig":
    {
      "infoTypes":
      [
        {
          "name": "EMAIL_ADDRESS"
        },
        {
          "name": "PERSON_NAME"
        },
        {
          "name": "LOCATION"
        },
        {
          "name": "PHONE_NUMBER"
        }
      ],
      "includeQuote": true,
      "minLikelihood": "UNLIKELY",
      "limits":
      {
        "maxFindingsPerRequest": 100
      }
    },
    "actions":
    [
      {
        "publishSummaryToCscc":
        {
        }
      }
    ]
  }
}

如需详细了解可用的扫描选项,请参阅检查存储空间和数据库中是否存在敏感数据

第 3 步:执行启动检查作业的请求

按照上述步骤配置作业后,点击执行以发送请求。如果请求成功,请求下方将显示包含成功代码和 JSON 对象的响应,该对象表明您创建的敏感数据保护作业的状态。

查看 Sensitive Data Protection 检查扫描的状态

扫描请求响应中包含检查扫描作业的 ID("name" 键)和当前状态("state" 键)。在您提交请求后,作业的状态为 "PENDING"

提交扫描请求后,系统会立即开始扫描内容。

如需查看检查作业的状态,请执行以下操作:

  1. 点击以下按钮,在 dlpJobs.get 方法的参考页面上转到 API Explorer:

    打开 API Explorer

  2. 名称框中,输入扫描请求的 JSON 响应中的作业名称,其格式如下:
    projects/PROJECT_ID/dlpJobs/JOB_ID
    作业 ID 的格式为 i-1234567890123456789
  3. 如需提交请求,请点击执行

如果响应 JSON 对象的 "state" 键指示作业为 "DONE",则表示检查作业已完成。

如需查看响应 JSON 的其余部分,请向下滚动页面。在 "result" > "infoTypeStats" 下,列出的每种信息类型都应有相应的 "count"。如果没有,请确保您输入的 JSON 准确无误,且数据的路径或位置正确无误。

检查作业完成后,您可以继续转到本指南的下一部分,在 Security Command Center 里查看扫描结果。

代码示例:检查 Cloud Storage 存储桶

此示例演示了如何使用 DLP API 创建检查作业,以检查 Cloud Storage 存储桶并将发现结果发送到 Security Command Center。

C#

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


using System.Collections.Generic;
using System.Linq;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectStorageWithSCCIntegration
{
    public static DlpJob SendGcsData(
        string projectId,
        string gcsPath,
        Likelihood minLikelihood = Likelihood.Unlikely,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Specify the GCS file to be inspected.
        var storageConfig = new StorageConfig
        {
            CloudStorageOptions = new CloudStorageOptions
            {
                FileSet = new CloudStorageOptions.Types.FileSet
                {
                    Url = gcsPath
                }
            }
        };

        // Specify the type of info to be inspected and construct the inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[]
                {
                    new InfoType { Name = "EMAIL_ADDRESS" },
                    new InfoType { Name = "PERSON_NAME" },
                    new InfoType { Name = "LOCATION" },
                    new InfoType { Name = "PHONE_NUMBER" }
                }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood,
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = 100
            }
        };

        // Construct the SCC action which will be performed after inspecting the storage.
        var actions = new Action[]
        {
            new Action
            {
                PublishSummaryToCscc = new Action.Types.PublishSummaryToCscc()
            }
        };

        // Construct the inspect job config using storage config, inspect config and action.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Construct the request.
        var request = new CreateDlpJobRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectJob = inspectJob
        };

        // Call the API.
        DlpJob response = dlp.CreateDlpJob(request);

        return response;
    }
}

Go

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectGCSFileSendToScc inspects sensitive data in a Google Cloud Storage (GCS) file
// and sends the inspection results to Google Cloud Security Command Center (SCC) for further analysis.
func inspectGCSFileSendToScc(w io.Writer, projectID, gcsPath string) error {
	// projectID := "my-project-id"
	// gcsPath := "gs://" + "your-bucket-name" + "path/to/file.txt"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the GCS file to be inspected.
	cloudStorageOptions := &dlppb.CloudStorageOptions{
		FileSet: &dlppb.CloudStorageOptions_FileSet{
			Url: gcsPath,
		},
	}

	// storageCfg represents the configuration for data inspection in various storage types.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_CloudStorageOptions{
			CloudStorageOptions: cloudStorageOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "EMAIL_ADDRESS"},
		{Name: "PERSON_NAME"},
		{Name: "LOCATION"},
		{Name: "PHONE_NUMBER"},
	}

	// The minimum likelihood required before returning a match.
	minLikelihood := dlppb.Likelihood_UNLIKELY

	// The maximum number of findings to report (0 = server maximum).
	findingLimits := &dlppb.InspectConfig_FindingLimits{
		MaxFindingsPerItem: 100,
	}

	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:     infoTypes,
		MinLikelihood: minLikelihood,
		Limits:        findingLimits,
		IncludeQuote:  true,
	}

	// Specify the action that is triggered when the job completes.
	action := &dlppb.Action{
		Action: &dlppb.Action_PublishSummaryToCscc_{
			PublishSummaryToCscc: &dlppb.Action_PublishSummaryToCscc{},
		},
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Send the request.
	resp, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the result.
	fmt.Fprintf(w, "Job created successfully: %v", resp.Name)
	return nil
}

Java

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectGcsFileSendToScc {

  private static final int TIMEOUT_MINUTES = 15;

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The name of the file in the Google Cloud Storage bucket.
    String gcsPath = "gs://" + "your-bucket-name" + "path/to/file.txt";
    createJobSendToScc(projectId, gcsPath);
  }

  // Creates a DLP Job to scan the sample data stored in a Cloud Storage and save its scan results
  // to Security Command Center.
  public static void createJobSendToScc(String projectId, String gcsPath)
      throws IOException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(CloudStorageOptions.FileSet.newBuilder().setUrl(gcsPath))
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder()
              .setCloudStorageOptions(cloudStorageOptions)
              .build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // The minimum likelihood required before returning a match.
      // See: https://cloud.google.com/dlp/docs/likelihood
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob response = dlpServiceClient.createDlpJob(createDlpJobRequest);
      // Get the current time.
      long startTime = System.currentTimeMillis();

      // Check if the job state is DONE.
      while (response.getState() != DlpJob.JobState.DONE) {
        // Sleep for 30 second.
        Thread.sleep(30000);

        // Get the updated job status.
        response = dlpServiceClient.getDlpJob(response.getName());

        // Check if the timeout duration has exceeded.
        long elapsedTime = System.currentTimeMillis() - startTime;
        if (TimeUnit.MILLISECONDS.toMinutes(elapsedTime) >= TIMEOUT_MINUTES) {
          System.out.printf("Job did not complete within %d minutes.%n", TIMEOUT_MINUTES);
          break;
        }
      }
      // Print the results.
      System.out.println("Job status: " + response.getState());
      System.out.println("Job name: " + response.getName());
      InspectDataSourceDetails.Result result = response.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }
}

Node.js

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlpClient = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'your-project-id';

// The name of the file in the bucket
// const gcsPath = 'gcs-file-path';

async function inspectGCSSendToScc() {
  // Specify the storage configuration object with GCS URL.
  const storageConfig = {
    cloudStorageOptions: {
      fileSet: {
        url: gcsPath,
      },
    },
  };

  // Construct the info types to look for in the GCS file.
  const infoTypes = [
    {name: 'EMAIL_ADDRESS'},
    {name: 'PERSON_NAME'},
    {name: 'LOCATION'},
    {name: 'PHONE_NUMBER'},
  ];

  // Construct the inspection configuration.
  const inspectConfig = {
    infoTypes,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.UNLIKELY,
    limits: {
      maxFindingsPerItem: 100,
    },
  };

  // Specify the action that is triggered when the job completes.
  const action = {
    publishSummaryToCscc: {},
  };

  // Configure the inspection job we want the service to perform.
  const jobConfig = {
    inspectConfig,
    storageConfig,
    actions: [action],
  };

  // Construct the job creation request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: jobConfig,
  };

  // Send the job creation request and process the response.
  const [jobsResponse] = await dlpClient.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Waiting for a maximum of 15 minutes for the job to get complete.
  let job;
  let numOfAttempts = 30;
  while (numOfAttempts > 0) {
    // Fetch DLP Job status
    [job] = await dlpClient.getDlpJob({name: jobName});

    // Check if the job has completed.
    if (job.state === 'DONE') {
      break;
    }
    if (job.state === 'FAILED') {
      console.log('Job Failed, Please check the configuration.');
      return;
    }
    // Sleep for a short duration before checking the job status again.
    await new Promise(resolve => {
      setTimeout(() => resolve(), 30000);
    });
    numOfAttempts -= 1;
  }

  // Print out the results.
  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectGCSSendToScc();

PHP

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\DlpJob\JobState;

/**
 * (GCS) Send Cloud DLP scan results to Security Command Center.
 * Using Cloud Data Loss Prevention to scan specific Google Cloud resources and send data to Security Command Center.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $gcsUri            GCS file to be inspected.
 */
function inspect_gcs_send_to_scc(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $gcsUri = 'gs://GOOGLE_STORAGE_BUCKET_NAME/dlp_sample.csv'
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Construct the items to be inspected.
    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet((new FileSet())
            ->setUrl($gcsUri));

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions(($cloudStorageOptions));

    // Specify the type of info the inspection will look for.
    $infoTypes = [
        (new InfoType())->setName('EMAIL_ADDRESS'),
        (new InfoType())->setName('PERSON_NAME'),
        (new InfoType())->setName('LOCATION'),
        (new InfoType())->setName('PHONE_NUMBER')
    ];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood(likelihood::UNLIKELY)
        ->setLimits((new FindingLimits())
            ->setMaxFindingsPerRequest(100))
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Construct inspect job config to run.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJobConfig
    ]);

    $numOfAttempts = 10;
    do {
        printf('Waiting for job to complete' . PHP_EOL);
        sleep(10);
        $job = $dlp->getDlpJob($job->getName());
        if ($job->getState() == JobState::DONE) {
            break;
        }
        $numOfAttempts--;
    } while ($numOfAttempts > 0);

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import time
from typing import List

import google.cloud.dlp


def inspect_gcs_send_to_scc(
    project: str,
    bucket: str,
    info_types: List[str],
    max_findings: int = 100,
) -> None:
    """
    Uses the Data Loss Prevention API to inspect Google Cloud Storage
    data and send the results to Google Security Command Center.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        info_types: A list of strings representing infoTypes to inspect for.
            A full list of infoType categories can be fetched from the API.
        max_findings: The maximum number of findings to report; 0 = no maximum.
    """
    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}"
    storage_config = {"cloud_storage_options": {"file_set": {"url": url}}}

    # Tell the API where to send a notification when the job is complete.
    actions = [{"publish_summary_to_cscc": {}}]

    # Construct the job definition.
    job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.create_dlp_job(
        request={
            "parent": parent,
            "inspect_job": job,
        }
    )
    print(f"Inspection Job started : {response.name}")

    job_name = response.name

    # Waiting for maximum 15 minutes for the job to get complete.
    no_of_attempts = 30
    while no_of_attempts > 0:
        # Get the DLP job status.
        job = dlp.get_dlp_job(request={"name": job_name})
        # Check if the job has completed.
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.DONE:
            break
        elif job.state == google.cloud.dlp_v2.DlpJob.JobState.FAILED:
            print("Job Failed, Please check the configuration.")
            return

        # Sleep for a short duration before checking the job status again.
        time.sleep(30)
        no_of_attempts -= 1

    # Print out the results.
    print(f"Job name: {job.name}")
    result = job.inspect_details.result
    print("Processed Bytes: ", result.processed_bytes)
    if result.info_type_stats:
        for stats in result.info_type_stats:
            print(f"Info type: {stats.info_type.name}")
            print(f"Count: {stats.count}")
    else:
        print("No findings.")

代码示例:检查 BigQuery 表

此示例演示了如何使用 DLP API 创建检查作业,以检查 BigQuery 表并将发现结果发送到 Security Command Center。

C#

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


using System.Collections.Generic;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQueryWithSCCIntegration
{
    public static DlpJob SendBigQueryData(
        string projectId,
        Likelihood minLikelihood = Likelihood.Unlikely,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct the storage config by providing the table to be inspected.
        var storageConfig = new StorageConfig
        {
            BigQueryOptions = new BigQueryOptions
            {
                TableReference = new BigQueryTable
                {
                    ProjectId = "bigquery-public-data",
                    DatasetId = "usa_names",
                    TableId = "usa_1910_current",
                }
            }
        };

        // Construct the inspect config by specifying the type of info to be inspected.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[]
                {
                    new InfoType { Name = "EMAIL_ADDRESS" },
                    new InfoType { Name = "PERSON_NAME" }
                }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood,
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = 100
            }
        };

        // Construct the SCC action which will be performed after inspecting the source.
        var actions = new Action[]
        {
            new Action
            {
                PublishSummaryToCscc = new Action.Types.PublishSummaryToCscc()
            }
        };

        // Construct the inspect job config using storage config, inspect config and action.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Construct the request.
        var request = new CreateDlpJobRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectJob = inspectJob
        };

        // Call the API.
        DlpJob response = dlp.CreateDlpJob(request);

        System.Console.WriteLine($"Job created successfully. Job name: {response.Name}");

        return response;
    }
}

Go

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectBigQuerySendToScc configures the inspection job that instructs Cloud DLP to scan data stored in BigQuery,
// and also instructs Cloud DLP to save its scan results to Security Command Center.
func inspectBigQuerySendToScc(w io.Writer, projectID, bigQueryDatasetId, bigQueryTableId string) error {
	// projectID := "my-project-id"
	// bigQueryDatasetId := "your-project-bigquery-dataset"
	// bigQueryTableId := "your-project-bigquery_table"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the BigQuery table to be inspected.
	tableReference := &dlppb.BigQueryTable{
		ProjectId: projectID,
		DatasetId: bigQueryDatasetId,
		TableId:   bigQueryTableId,
	}

	bigQueryOptions := &dlppb.BigQueryOptions{
		TableReference: tableReference,
	}

	// Specify the type of storage that you have configured.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_BigQueryOptions{
			BigQueryOptions: bigQueryOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types.
	infoTypes := []*dlppb.InfoType{
		{Name: "EMAIL_ADDRESS"},
		{Name: "PERSON_NAME"},
		{Name: "LOCATION"},
		{Name: "PHONE_NUMBER"},
	}

	// The minimum likelihood required before returning a match.
	minLikelihood := dlppb.Likelihood_UNLIKELY

	// The maximum number of findings to report (0 = server maximum).
	findingLimits := &dlppb.InspectConfig_FindingLimits{
		MaxFindingsPerItem: 100,
	}

	// Specify how the content should be inspected.
	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:     infoTypes,
		MinLikelihood: minLikelihood,
		Limits:        findingLimits,
		IncludeQuote:  true,
	}

	// Specify the action that is triggered when the job completes.
	action := &dlppb.Action{
		Action: &dlppb.Action_PublishSummaryToCscc_{
			PublishSummaryToCscc: &dlppb.Action_PublishSummaryToCscc{},
		},
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Send the request.
	resp, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the result
	fmt.Fprintf(w, "Job created successfully: %v", resp.Name)
	return nil
}

Java

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectBigQuerySendToScc {

  private static final int TIMEOUT_MINUTES = 15;

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The BigQuery dataset id to be used and the reference table name to be inspected.
    String bigQueryDatasetId = "your-project-bigquery-dataset";
    String bigQueryTableId = "your-project-bigquery_table";
    inspectBigQuerySendToScc(projectId, bigQueryDatasetId, bigQueryTableId);
  }

  // Inspects a BigQuery Table to send data to Security Command Center.
  public static void inspectBigQuerySendToScc(
      String projectId, String bigQueryDatasetId, String bigQueryTableId) throws Exception {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(bigQueryDatasetId)
              .setTableId(bigQueryTableId)
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder().setTableReference(tableReference).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // The minimum likelihood required before returning a match.
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob response = dlpServiceClient.createDlpJob(createDlpJobRequest);

      // Get the current time.
      long startTime = System.currentTimeMillis();

      // Check if the job state is DONE.
      while (response.getState() != DlpJob.JobState.DONE) {
        // Sleep for 30 second.
        Thread.sleep(30000);

        // Get the updated job status.
        response = dlpServiceClient.getDlpJob(response.getName());

        // Check if the timeout duration has exceeded.
        long elapsedTime = System.currentTimeMillis() - startTime;
        if (TimeUnit.MILLISECONDS.toMinutes(elapsedTime) >= TIMEOUT_MINUTES) {
          System.out.printf("Job did not complete within %d minutes.%n", TIMEOUT_MINUTES);
          break;
        }
      }
      // Print the results.
      System.out.println("Job status: " + response.getState());
      System.out.println("Job name: " + response.getName());
      InspectDataSourceDetails.Result result = response.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }
}

Node.js

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under.
// const projectId = "your-project-id";

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

async function inspectBigQuerySendToScc() {
  // Specify the storage configuration object with big query table.
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
    },
  };

  // Specify the type of info the inspection will look for.
  const infoTypes = [
    {name: 'EMAIL_ADDRESS'},
    {name: 'PERSON_NAME'},
    {name: 'LOCATION'},
    {name: 'PHONE_NUMBER'},
  ];

  // Construct inspect configuration.
  const inspectConfig = {
    infoTypes: infoTypes,
    includeQuote: true,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.UNLIKELY,
    limits: {
      maxFindingsPerItem: 100,
    },
  };

  // Specify the action that is triggered when the job completes.
  const action = {
    publishSummaryToCscc: {
      enable: true,
    },
  };

  // Configure the inspection job we want the service to perform.
  const inspectJobConfig = {
    inspectConfig: inspectConfig,
    storageConfig: storageItem,
    actions: [action],
  };

  // Construct the job creation request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: inspectJobConfig,
  };

  // Send the job creation request and process the response.
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Waiting for a maximum of 15 minutes for the job to get complete.
  let job;
  let numOfAttempts = 30;
  while (numOfAttempts > 0) {
    // Fetch DLP Job status
    [job] = await dlp.getDlpJob({name: jobName});

    // Check if the job has completed.
    if (job.state === 'DONE') {
      break;
    }
    if (job.state === 'FAILED') {
      console.log('Job Failed, Please check the configuration.');
      return;
    }
    // Sleep for a short duration before checking the job status again.
    await new Promise(resolve => {
      setTimeout(() => resolve(), 30000);
    });
    numOfAttempts -= 1;
  }

  // Print out the results.
  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectBigQuerySendToScc();

PHP

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\DlpJob\JobState;

/**
 * (BIGQUERY) Send Cloud DLP scan results to Security Command Center.
 * Using Cloud Data Loss Prevention to scan specific Google Cloud resources and send data to Security Command Center.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $projectId         The ID of the Project.
 * @param string $datasetId         The ID of the BigQuery Dataset.
 * @param string $tableId           The ID of the BigQuery Table to be inspected.
 */
function inspect_bigquery_send_to_scc(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $projectId,
    string $datasetId,
    string $tableId
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Construct the items to be inspected.
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($projectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);
    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions(($bigQueryOptions));

    // Specify the type of info the inspection will look for.
    $infoTypes = [
        (new InfoType())->setName('EMAIL_ADDRESS'),
        (new InfoType())->setName('PERSON_NAME'),
        (new InfoType())->setName('LOCATION'),
        (new InfoType())->setName('PHONE_NUMBER')
    ];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood(likelihood::UNLIKELY)
        ->setLimits((new FindingLimits())
            ->setMaxFindingsPerRequest(100))
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Configure the inspection job we want the service to perform.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJobConfig
    ]);

    $numOfAttempts = 10;
    do {
        printf('Waiting for job to complete' . PHP_EOL);
        sleep(10);
        $job = $dlp->getDlpJob($job->getName());
        if ($job->getState() == JobState::DONE) {
            break;
        }
        $numOfAttempts--;
    } while ($numOfAttempts > 0);

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import time
from typing import List

import google.cloud.dlp


def inspect_bigquery_send_to_scc(
    project: str,
    info_types: List[str],
    max_findings: int = 100,
) -> None:
    """
    Uses the Data Loss Prevention API to inspect public bigquery dataset
    and send the results to Google Security Command Center.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        info_types: A list of strings representing infoTypes to inspect for.
            A full list of infoType categories can be fetched from the API.
        max_findings: The maximum number of findings to report; 0 = no maximum
    """
    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a Cloud Storage Options dictionary with the big query options.
    storage_config = {
        "big_query_options": {
            "table_reference": {
                "project_id": "bigquery-public-data",
                "dataset_id": "usa_names",
                "table_id": "usa_1910_current",
            }
        }
    }

    # Tell the API where to send a notification when the job is complete.
    actions = [{"publish_summary_to_cscc": {}}]

    # Construct the job definition.
    job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.create_dlp_job(
        request={
            "parent": parent,
            "inspect_job": job,
        }
    )
    print(f"Inspection Job started : {response.name}")

    job_name = response.name

    # Waiting for a maximum of 15 minutes for the job to get complete.
    no_of_attempts = 30
    while no_of_attempts > 0:
        # Get the DLP job status.
        job = dlp.get_dlp_job(request={"name": job_name})
        # Check if the job has completed.
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.DONE:
            break
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.FAILED:
            print("Job Failed, Please check the configuration.")
            return

        # Sleep for a short duration before checking the job status again.
        time.sleep(30)
        no_of_attempts -= 1

    # Print out the results.
    print(f"Job name: {job.name}")
    result = job.inspect_details.result
    if result.info_type_stats:
        for stats in result.info_type_stats:
            print(f"Info type: {stats.info_type.name}")
            print(f"Count: {stats.count}")
    else:
        print("No findings.")

代码示例:检查 Datastore 种类

此示例演示了如何使用 DLP API 创建用于检查 Datastore 种类并将发现结果发送到 Security Command Center 的检查作业。

C#

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


using System.Collections.Generic;
using System.Linq;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectDataStoreJobWithSCCIntegration
{
    public static DlpJob SendInspectDatastoreToSCC(
        string projectId,
        string kindName,
        string namespaceId,
        Likelihood minLikelihood = Likelihood.Unlikely,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Specify the Datastore entity to be inspected and construct the storage
        // config. The NamespaceId is to be used for partition entity and the datastore kind defining
        // a data set.
        var storageConfig = new StorageConfig
        {
            DatastoreOptions = new DatastoreOptions
            {
                Kind = new KindExpression { Name = kindName },
                PartitionId = new PartitionId
                {
                    NamespaceId = namespaceId,
                    ProjectId = projectId
                }
            }
        };

        // Specify the type of info to be inspected and construct the inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[]
                {
                    new InfoType { Name = "EMAIL_ADDRESS" },
                    new InfoType { Name = "PERSON_NAME" },
                    new InfoType { Name = "LOCATION" },
                    new InfoType { Name = "PHONE_NUMBER" }
                }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood,
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = 100
            }
        };

        // Construct the SCC action which will be performed after inspecting the datastore.
        var actions = new Action[]
        {
            new Action
            {
                PublishSummaryToCscc = new Action.Types.PublishSummaryToCscc()
            }
        };

        // Construct the inspect job config using storage config, inspect config and action.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Construct the request.
        var request = new CreateDlpJobRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectJob = inspectJob
        };

        // Call the API.
        DlpJob response = dlp.CreateDlpJob(request);

        return response;
    }
}

Go

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectDataStoreSendToScc inspects sensitive data in a Datastore
// and sends the results to Google Cloud Security Command Center (SCC).
func inspectDataStoreSendToScc(w io.Writer, projectID, datastoreNamespace, datastoreKind string) error {
	// projectID := "my-project-id"
	// datastoreNamespace := "your-datastore-namespace"
	// datastoreKind := "your-datastore-kind"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the Datastore entity to be inspected.
	partitionId := &dlppb.PartitionId{
		ProjectId:   projectID,
		NamespaceId: datastoreNamespace,
	}

	// kindExpr represents an expression specifying a kind or range of kinds for data inspection in DLP.
	kindExpression := &dlppb.KindExpression{
		Name: datastoreKind,
	}

	// Specify datastoreOptions so that It holds the configuration options for inspecting data in
	// Google Cloud Datastore.
	datastoreOptions := &dlppb.DatastoreOptions{
		PartitionId: partitionId,
		Kind:        kindExpression,
	}

	// Specify the storageConfig to represents the configuration settings for inspecting data
	// in different storage types, such as BigQuery and Cloud Storage.
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_DatastoreOptions{
			DatastoreOptions: datastoreOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "EMAIL_ADDRESS"},
		{Name: "PERSON_NAME"},
		{Name: "LOCATION"},
		{Name: "PHONE_NUMBER"},
	}

	// The minimum likelihood required before returning a match.
	minLikelihood := dlppb.Likelihood_UNLIKELY

	// The maximum number of findings to report (0 = server maximum).
	findingLimits := &dlppb.InspectConfig_FindingLimits{
		MaxFindingsPerItem: 100,
	}

	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:     infoTypes,
		MinLikelihood: minLikelihood,
		Limits:        findingLimits,
		IncludeQuote:  true,
	}

	// Specify the action that is triggered when the job completes.
	action := &dlppb.Action{
		Action: &dlppb.Action_PublishSummaryToCscc_{
			PublishSummaryToCscc: &dlppb.Action_PublishSummaryToCscc{},
		},
	}

	// Configure the inspection job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Send the request.
	resp, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}

	// Print the result
	fmt.Fprintf(w, "Job created successfully: %v", resp.Name)
	return nil
}

Java

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DatastoreOptions;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.KindExpression;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PartitionId;
import com.google.privacy.dlp.v2.StorageConfig;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectDatastoreSendToScc {

  private static final int TIMEOUT_MINUTES = 15;

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The namespace specifier to be used for the partition entity.
    String datastoreNamespace = "your-datastore-namespace";
    // The datastore kind defining a data set.
    String datastoreKind = "your-datastore-kind";
    inspectDatastoreSendToScc(projectId, datastoreNamespace, datastoreKind);
  }

  // Creates a DLP Job to scan the sample data stored in a DataStore table and save its scan results
  // to Security Command Center.
  public static void inspectDatastoreSendToScc(
      String projectId, String datastoreNamespace, String datastoreKind)
      throws IOException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the Datastore entity to be inspected.
      PartitionId partitionId =
          PartitionId.newBuilder()
              .setProjectId(projectId)
              .setNamespaceId(datastoreNamespace)
              .build();

      KindExpression kindExpression = KindExpression.newBuilder().setName(datastoreKind).build();

      DatastoreOptions datastoreOptions =
          DatastoreOptions.newBuilder().setKind(kindExpression).setPartitionId(partitionId).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setDatastoreOptions(datastoreOptions).build();

      // Specify the type of info the inspection will look for.
      List<InfoType> infoTypes =
          Stream.of("EMAIL_ADDRESS", "PERSON_NAME", "LOCATION", "PHONE_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // The minimum likelihood required before returning a match.
      Likelihood minLikelihood = Likelihood.UNLIKELY;

      // The maximum number of findings to report (0 = server maximum)
      InspectConfig.FindingLimits findingLimits =
          InspectConfig.FindingLimits.newBuilder().setMaxFindingsPerItem(100).build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addAllInfoTypes(infoTypes)
              .setIncludeQuote(true)
              .setMinLikelihood(minLikelihood)
              .setLimits(findingLimits)
              .build();

      // Specify the action that is triggered when the job completes.
      Action.PublishSummaryToCscc publishSummaryToCscc =
          Action.PublishSummaryToCscc.getDefaultInstance();
      Action action = Action.newBuilder().setPublishSummaryToCscc(publishSummaryToCscc).build();

      // Configure the inspection job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setInspectConfig(inspectConfig)
              .setStorageConfig(storageConfig)
              .addActions(action)
              .build();

      // Construct the job creation request to be sent by the client.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Send the job creation request and process the response.
      DlpJob response = dlpServiceClient.createDlpJob(createDlpJobRequest);
      // Get the current time.
      long startTime = System.currentTimeMillis();

      // Check if the job state is DONE.
      while (response.getState() != DlpJob.JobState.DONE) {
        // Sleep for 30 second.
        Thread.sleep(30000);

        // Get the updated job status.
        response = dlpServiceClient.getDlpJob(response.getName());

        // Check if the timeout duration has exceeded.
        long elapsedTime = System.currentTimeMillis() - startTime;
        if (TimeUnit.MILLISECONDS.toMinutes(elapsedTime) >= TIMEOUT_MINUTES) {
          System.out.printf("Job did not complete within %d minutes.%n", TIMEOUT_MINUTES);
          break;
        }
      }
      // Print the results.
      System.out.println("Job status: " + response.getState());
      System.out.println("Job name: " + response.getName());
      InspectDataSourceDetails.Result result = response.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }
}

Node.js

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under.
// const projectId = "your-project-id";

// Datastore namespace
// const datastoreNamespace = 'datastore-namespace';

// Datastore kind
// const datastoreKind = 'datastore-kind';

async function inspectDatastoreSendToScc() {
  // Specify the storage configuration object with datastore.
  const storageConfig = {
    datastoreOptions: {
      kind: {
        name: datastoreKind,
      },
      partitionId: {
        projectId: projectId,
        namespaceId: datastoreNamespace,
      },
    },
  };

  // Construct the info types to look for in the datastore.
  const infoTypes = [
    {name: 'EMAIL_ADDRESS'},
    {name: 'PERSON_NAME'},
    {name: 'LOCATION'},
    {name: 'PHONE_NUMBER'},
  ];

  // Construct the inspection configuration.
  const inspectConfig = {
    infoTypes: infoTypes,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.UNLIKELY,
    limits: {
      maxFindingsPerItem: 100,
    },
    includeQuote: true,
  };

  // Specify the action that is triggered when the job completes
  const action = {
    publishSummaryToCscc: {enable: true},
  };

  // Configure the inspection job we want the service to perform.
  const inspectJobConfig = {
    inspectConfig: inspectConfig,
    storageConfig: storageConfig,
    actions: [action],
  };

  // Construct the job creation request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: inspectJobConfig,
  };

  // Send the job creation request and process the response.
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Waiting for a maximum of 15 minutes for the job to get complete.
  let job;
  let numOfAttempts = 30;
  while (numOfAttempts > 0) {
    // Fetch DLP Job status
    [job] = await dlp.getDlpJob({name: jobName});

    // Check if the job has completed.
    if (job.state === 'DONE') {
      break;
    }
    if (job.state === 'FAILED') {
      console.log('Job Failed, Please check the configuration.');
      return;
    }
    // Sleep for a short duration before checking the job status again.
    await new Promise(resolve => {
      setTimeout(() => resolve(), 30000);
    });
    numOfAttempts -= 1;
  }

  // Print out the results.
  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectDatastoreSendToScc();

PHP

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishSummaryToCscc;
use Google\Cloud\Dlp\V2\DatastoreOptions;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\KindExpression;
use Google\Cloud\Dlp\V2\PartitionId;
use Google\Cloud\Dlp\V2\DlpJob\JobState;

/**
 * (DATASTORE) Send Cloud DLP scan results to Security Command Center.
 * Using Cloud Data Loss Prevention to scan specific Google Cloud resources and send data to Security Command Center.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $kindName          Datastore kind name to be inspected.
 * @param string $namespaceId       Namespace Id to be inspected.
 */
function inspect_datastore_send_to_scc(
    string $callingProjectId,
    string $kindName,
    string $namespaceId
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Construct the items to be inspected.
    $datastoreOptions = (new DatastoreOptions())
        ->setKind((new KindExpression())
            ->setName($kindName))
        ->setPartitionId((new PartitionId())
            ->setNamespaceId($namespaceId)
            ->setProjectId($callingProjectId));

    $storageConfig = (new StorageConfig())
        ->setDatastoreOptions(($datastoreOptions));

    // Specify the type of info the inspection will look for.
    $infoTypes = [
        (new InfoType())->setName('EMAIL_ADDRESS'),
        (new InfoType())->setName('PERSON_NAME'),
        (new InfoType())->setName('LOCATION'),
        (new InfoType())->setName('PHONE_NUMBER')
    ];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood(likelihood::UNLIKELY)
        ->setLimits((new FindingLimits())
            ->setMaxFindingsPerRequest(100))
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $action = (new Action())
        ->setPublishSummaryToCscc(new PublishSummaryToCscc());

    // Construct inspect job config to run.
    $inspectJobConfig = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Send the job creation request and process the response.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJobConfig
    ]);

    $numOfAttempts = 10;
    do {
        printf('Waiting for job to complete' . PHP_EOL);
        sleep(10);
        $job = $dlp->getDlpJob($job->getName());
        if ($job->getState() == JobState::DONE) {
            break;
        }
        $numOfAttempts--;
    } while ($numOfAttempts > 0);

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

如需了解如何安装和使用敏感数据保护客户端库,请参阅 敏感数据保护客户端库

如需向 Sensitive Data Protection 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import time
from typing import List

import google.cloud.dlp


def inspect_datastore_send_to_scc(
    project: str,
    datastore_project: str,
    kind: str,
    info_types: List[str],
    namespace_id: str = None,
    max_findings: int = 100,
) -> None:
    """
    Uses the Data Loss Prevention API to inspect Datastore data and
    send the results to Google Security Command Center.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        datastore_project: The Google Cloud project id of the target Datastore.
        kind: The kind of the Datastore entity to inspect, e.g. 'Person'.
        info_types: A list of strings representing infoTypes to inspect for.
            A full list of infoType categories can be fetched from the API.
        namespace_id: The namespace of the Datastore document, if applicable.
        max_findings: The maximum number of findings to report; 0 = no maximum

    """
    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    info_types = [{"name": info_type} for info_type in info_types]

    # Construct the configuration dictionary.
    inspect_config = {
        "info_types": info_types,
        "min_likelihood": google.cloud.dlp_v2.Likelihood.UNLIKELY,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Construct a cloud_storage_options dictionary with datastore options.
    storage_config = {
        "datastore_options": {
            "partition_id": {
                "project_id": datastore_project,
                "namespace_id": namespace_id,
            },
            "kind": {"name": kind},
        }
    }

    # Tell the API where to send a notification when the job is complete.
    actions = [{"publish_summary_to_cscc": {}}]

    # Construct the job definition.
    job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API
    response = dlp.create_dlp_job(
        request={
            "parent": parent,
            "inspect_job": job,
        }
    )
    print(f"Inspection Job started : {response.name}")

    job_name = response.name

    # Waiting for a maximum of 15 minutes for the job to get complete.
    no_of_attempts = 30
    while no_of_attempts > 0:
        # Get the DLP job status.
        job = dlp.get_dlp_job(request={"name": job_name})
        # Check if the job has completed.
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.DONE:
            break
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.FAILED:
            print("Job Failed, Please check the configuration.")
            return

        # Sleep for a short duration before checking the job status again.
        time.sleep(30)
        no_of_attempts -= 1

    # Print out the results.
    print(f"Job name: {job.name}")
    result = job.inspect_details.result
    if result.info_type_stats:
        for stats in result.info_type_stats:
            print(f"Info type: {stats.info_type.name}")
            print(f"Count: {stats.count}")
    else:
        print("No findings.")

在 Security Command Center 中查看敏感数据保护扫描结果

由于您已指示敏感数据保护将其检查作业结果发送到 Security Command Center,因此您现在可以在 Security Command Center 中查看检查作业的结果:

  1. 在 Google Cloud 控制台中,转到 Security Command Center 发现结果页面。

    转至“发现结果”

  2. 选择您为其启用了 Security Command Center 的组织。
  3. 查询编辑器字段中,输入以下内容,以查询敏感数据保护功能的发现。

    state="ACTIVE"
    AND NOT mute="MUTED"
    AND (parent_display_name="Sensitive Data Protection" OR parent_display_name="Cloud Data Loss Prevention")
    

    如需详细了解查询编辑器,请参阅在 Google Cloud 控制台中修改发现结果查询

    如果敏感数据保护发送了任何发现结果,这些结果会显示在发现结果列表中。该列表包含敏感数据保护功能的所有发现结果,其中可能包括检查作业和发现(数据分析)操作的发现结果。

本指南中提供的说明仅会开启 Sensitive Data Protection 的部分内置检测器。

清理

为避免因本主题中使用的资源导致您的 Google Cloud 账号产生费用,请执行以下操作:

删除项目

为避免支付费用,最简单的方法是按照本主题中提供的说明删除您创建的项目。

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

如果使用此方法删除项目,会一同删除您创建的敏感数据保护作业和 Cloud Storage 存储桶,不用再执行以下部分中的操作说明。

删除敏感数据保护作业

如果您扫描的是自己的数据,则只需删除您创建的检查作业:

  1. 点击以下按钮,在 dlpJobs.delete 方法的参考页面上转到 API Explorer:

    打开 API Explorer

  2. 名称框中,输入扫描请求的 JSON 响应中的作业名称,其格式如下:
    projects/PROJECT_ID/dlpJobs/JOB_ID
    作业 ID 的格式为 i-1234567890123456789

如果您创建了其他检查作业,或者想要确保已成功删除作业,可以列出现有的所有作业:

  1. 点击以下按钮,在 dlpJobs.list 方法的参考页面上转到 API Explorer:

    打开 API Explorer

  2. 父级框中,按以下格式输入项目标识符:
    projects/PROJECT_ID
  3. 点击执行

如果响应中未列出任何作业,则表明您已删除所有作业。如果响应中列出了作业,请对这些作业重复删除步骤。

删除 Cloud Storage 存储分区

如果您创建了一个新的 Cloud Storage 存储分区来保存样本数据,请删除该存储分区:

  1. 打开 Cloud Storage 浏览器

    打开 Cloud Storage

  2. 在 Cloud Storage 浏览器中,选中您创建的存储分区名称旁边的复选框,然后点击删除

后续步骤