检查结构化文本是否存在敏感数据

敏感数据保护可以检测结构化内容(如 CSV)中的敏感数据并对其进行分类。通过以表形式进行检查或去标识化,结构和列可为敏感数据保护提供额外的线索,使其能够针对某些使用场景提供更好的结果。

检查表

以下代码示例演示了如何检查数据表中是否存在敏感内容。 支持各种类型

C#

如需了解如何安装和使用用于敏感数据保护的客户端库,请参阅敏感数据保护客户端库

如需向敏感数据保护服务进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证


using System;
using System.Collections.Generic;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;

public class InspectTable
{
    public static InspectContentResponse InspectTableData(
        string projectId,
        Table tableToInspect = null,
        IEnumerable<InfoType> infoTypes = null)
    {
        // Instantiate a client.
        var dlp = DlpServiceClient.Create();

        // Construct the table if null.
        if (tableToInspect == null)
        {
            var row1 = new Value[]
            {
                new Value { StringValue = "John Doe" },
                new Value { StringValue = "(206) 555-0123" }
            };
            var row2 = new Value[]
            {
                new Value { StringValue = "Mark Twain" },
                new Value { StringValue = "(450) 555-0123" }
            };

            tableToInspect = new Table
            {
                Headers =
                {
                    new FieldId { Name = "Name" }, new FieldId { Name = "Phone" }
                },
                Rows =
                {
                    new Table.Types.Row { Values = { row1 } },
                    new Table.Types.Row { Values = { row2 } }
                }
            };
        }

        // Set content item.
        var contentItem = new ContentItem { Table = tableToInspect };

        // Construct inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[] { new InfoType { Name = "PHONE_NUMBER" } }
            },
            IncludeQuote = true,
        };

        // Construct a request.
        var request = new InspectContentRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            InspectConfig = inspectConfig,
            Item = contentItem,
        };

        // Call the API.
        var response = dlp.InspectContent(request);

        // Inspect the results.
        var resultFindings = response.Result.Findings;

        Console.WriteLine($"Findings: {resultFindings.Count}");

        foreach (var f in resultFindings)
        {
            Console.WriteLine("Quote: " + f.Quote);
            Console.WriteLine("Info type: " + f.InfoType.Name);
            Console.WriteLine("Likelihood: " + f.Likelihood);
        }

        return response;
    }
}

Go

如需了解如何安装和使用用于敏感数据保护的客户端库,请参阅敏感数据保护客户端库

如需向敏感数据保护服务进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证

import (
	"context"
	"fmt"
	"io"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// inspectTable inspects a table for sensitive content
func inspectTable(w io.Writer, projectID string) error {
	// projectID := "your-project-id"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// create a default table
	tableToInspect := &dlppb.Table{
		Headers: []*dlppb.FieldId{
			{Name: "name"},
			{Name: "phone"},
		},
		Rows: []*dlppb.Table_Row{
			{
				Values: []*dlppb.Value{
					{
						Type: &dlppb.Value_StringValue{
							StringValue: "John Doe",
						},
					},
					{
						Type: &dlppb.Value_StringValue{
							StringValue: "(206) 555-0123",
						},
					},
				},
			},
		},
	}

	// Specify the table to be inspected.
	contentItem := &dlppb.ContentItem{
		DataItem: &dlppb.ContentItem_Table{
			Table: tableToInspect,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "PHONE_NUMBER"},
	}

	// Construct the Inspect request to be sent by the client.
	req := &dlppb.InspectContentRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Item:   contentItem,
		InspectConfig: &dlppb.InspectConfig{
			InfoTypes:    infoTypes,
			IncludeQuote: true,
		},
	}

	// Send the request.
	resp, err := client.InspectContent(ctx, req)
	if err != nil {
		return err
	}

	// Print the results.
	fmt.Fprintf(w, "Findings: %v\n", len(resp.Result.Findings))
	for _, v := range resp.GetResult().Findings {
		fmt.Fprintf(w, "Quote: %v\n", v.GetQuote())
		fmt.Fprintf(w, "Infotype Name: %v\n", v.GetInfoType().GetName())
		fmt.Fprintf(w, "Likelihood: %v\n", v.GetLikelihood())
	}
	return nil

}

Java

如需了解如何安装和使用用于敏感数据保护的客户端库,请参阅敏感数据保护客户端库

如需向敏感数据保护服务进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.ContentItem;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.Finding;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectContentRequest;
import com.google.privacy.dlp.v2.InspectContentResponse;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.Table;
import com.google.privacy.dlp.v2.Table.Row;
import com.google.privacy.dlp.v2.Value;

public class InspectTable {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    Table tableToInspect =
        Table.newBuilder()
            .addHeaders(FieldId.newBuilder().setName("name").build())
            .addHeaders(FieldId.newBuilder().setName("phone").build())
            .addRows(
                Row.newBuilder()
                    .addValues(Value.newBuilder().setStringValue("John Doe").build())
                    .addValues(Value.newBuilder().setStringValue("(206) 555-0123").build()))
            .build();

    inspectTable(projectId, tableToInspect);
  }

  // Inspects the provided text.
  public static void inspectTable(String projectId, Table tableToInspect) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the table to be inspected.
      ContentItem item = ContentItem.newBuilder().setTable(tableToInspect).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PHONE_NUMBER").build();

      // Construct the configuration for the Inspect request.
      InspectConfig config =
          InspectConfig.newBuilder().addInfoTypes(infoType).setIncludeQuote(true).build();

      // Construct the Inspect request to be sent by the client.
      InspectContentRequest request =
          InspectContentRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setItem(item)
              .setInspectConfig(config)
              .build();

      // Use the client to send the API request.
      InspectContentResponse response = dlp.inspectContent(request);

      // Parse the response and process results
      System.out.println("Findings: " + response.getResult().getFindingsCount());
      for (Finding f : response.getResult().getFindingsList()) {
        System.out.println("\tQuote: " + f.getQuote());
        System.out.println("\tInfo type: " + f.getInfoType().getName());
        System.out.println("\tLikelihood: " + f.getLikelihood());
      }
    } catch (Exception e) {
      System.out.println("Error during inspectString: \n" + e.toString());
    }
  }
}

Node.js

如需了解如何安装和使用用于敏感数据保护的客户端库,请参阅敏感数据保护客户端库

如需向敏感数据保护服务进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under
// const projectId = 'my-project';

// The infoTypes of information to match
const infoTypes = [{name: 'PHONE_NUMBER'}];

// Table data
const tableData = {
  headers: [{name: 'name'}, {name: 'phone'}],
  rows: [
    {
      values: [{stringValue: 'John Doe'}, {stringValue: '(206) 555-0123'}],
    },
  ],
};

async function inspectTable() {
  // Specify the table to be inspected.
  const item = {
    table: tableData,
  };

  // Construct the configuration for the Inspect request.
  const inspectConfig = {
    infoTypes: infoTypes,
    includeQuote: true,
  };

  // Construct the Inspect request to be sent by the client.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectConfig: inspectConfig,
    item: item,
  };

  // Use the client to send the API request.
  const [response] = await dlp.inspectContent(request);

  // Print findings.
  const findings = response.result.findings;
  if (findings.length > 0) {
    console.log(`Findings: ${findings.length}\n`);
    findings.forEach(finding => {
      console.log(`InfoType: ${finding.infoType.name}`);
      console.log(`\tQuote: ${finding.quote}`);
      console.log(`\tLikelihood: ${finding.likelihood} \n`);
    });
  } else {
    console.log('No findings.');
  }
}
inspectTable();

PHP

如需了解如何安装和使用用于敏感数据保护的客户端库,请参阅敏感数据保护客户端库

如需向敏感数据保护服务进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\ContentItem;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectContentRequest;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\Table;
use Google\Cloud\Dlp\V2\Table\Row;
use Google\Cloud\Dlp\V2\Value;

/**
 * Inspect a table for sensitive content.
 *
 * @param string $projectId         The Google Cloud project id to use as a parent resource.
 */
function inspect_table(string $projectId): void
{
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    $parent = "projects/$projectId/locations/global";

    // Specify the table to be inspected.
    $tableToDeIdentify = (new Table())
        ->setHeaders([
            (new FieldId())
                ->setName('NAME'),
            (new FieldId())
                ->setName('PHONE'),
        ])
        ->setRows([
            (new Row())->setValues([
                (new Value())
                    ->setStringValue('John Doe'),
                (new Value())
                    ->setStringValue('(206) 555-0123')
            ])
        ]);

    $item = (new ContentItem())
        ->setTable($tableToDeIdentify);

    // Construct the configuration for the Inspect request.
    $phoneNumber = (new InfoType())
        ->setName('PHONE_NUMBER');
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes([$phoneNumber])
        ->setIncludeQuote(true);

    // Run request.
    $inspectContentRequest = (new InspectContentRequest())
        ->setParent($parent)
        ->setInspectConfig($inspectConfig)
        ->setItem($item);
    $response = $dlp->inspectContent($inspectContentRequest);

    // Print the results.
    $findings = $response->getResult()->getFindings();
    if (count($findings) == 0) {
        printf('No findings.' . PHP_EOL);
    } else {
        printf('Findings:' . PHP_EOL);
        foreach ($findings as $finding) {
            printf('  Quote: %s' . PHP_EOL, $finding->getQuote());
            printf('  Info type: %s' . PHP_EOL, $finding->getInfoType()->getName());
            printf('  Likelihood: %s' . PHP_EOL, Likelihood::name($finding->getLikelihood()));
        }
    }
}

Python

如需了解如何安装和使用用于敏感数据保护的客户端库,请参阅敏感数据保护客户端库

如需向敏感数据保护服务进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证

from typing import List, Optional

import google.cloud.dlp

def inspect_table(
    project: str,
    data: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[str] = None,
    max_findings: Optional[int] = None,
    include_quote: bool = True,
) -> None:
    """Uses the Data Loss Prevention API to analyze strings for protected data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        data: Json string representing table data.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        include_quote: Boolean for whether to display a quote of the detected
            information in the results.
    Returns:
        None; the response from the API is printed to the terminal.
    Example:
        data = {
            "header":[
                "email",
                "phone number"
            ],
            "rows":[
                [
                    "robertfrost@xyz.com",
                    "4232342345"
                ],
                [
                    "johndoe@pqr.com",
                    "4253458383"
                ]
            ]
        }

        >> $ python inspect_content.py table \
        '{"header": ["email", "phone number"],
        "rows": [["robertfrost@xyz.com", "4232342345"],
        ["johndoe@pqr.com", "4253458383"]]}'
        >>  Quote: robertfrost@xyz.com
            Info type: EMAIL_ADDRESS
            Likelihood: 4
            Quote: johndoe@pqr.com
            Info type: EMAIL_ADDRESS
            Likelihood: 4
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "include_quote": include_quote,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct the `table`. For more details on the table schema, please see
    # https://cloud.google.com/dlp/docs/reference/rest/v2/ContentItem#Table
    headers = [{"name": val} for val in data["header"]]
    rows = []
    for row in data["rows"]:
        rows.append({"values": [{"string_value": cell_val} for cell_val in row]})

    table = {}
    table["headers"] = headers
    table["rows"] = rows
    item = {"table": table}
    # Convert the project id into a full resource id.
    parent = f"projects/{project}"

    # Call the API.
    response = dlp.inspect_content(
        request={"parent": parent, "inspect_config": inspect_config, "item": item}
    )

    # Print out the results.
    if response.result.findings:
        for finding in response.result.findings:
            try:
                if finding.quote:
                    print(f"Quote: {finding.quote}")
            except AttributeError:
                pass
            print(f"Info type: {finding.info_type.name}")
            print(f"Likelihood: {finding.likelihood}")
    else:
        print("No findings.")

REST

要详细了解如何将 DLP API 与 JSON 结合使用,请参阅 JSON 快速入门

JSON 输入:

POST https://dlp.googleapis.com/v2/projects/[PROJECT_ID]/content:inspect?key={YOUR_API_KEY}

{
  "item":{
    "table":{
      "headers": [{"name":"name"}, {"name":"phone"}],
      "rows": [{
        "values":[
          {"string_value": "John Doe"},
          {"string_value": "(206) 555-0123"}
        ]}
      ],
    }
  },
  "inspectConfig":{
    "infoTypes":[
      {
        "name":"PHONE_NUMBER"
      }
    ],
    "includeQuote":true
  }
}

JSON 输出:

{
  "result": {
    "findings": [
     {
      "quote": "(206) 555-0123",
      "infoType": {
       "name": "PHONE_NUMBER"
      },
      "likelihood": "VERY_LIKELY",
      "location": {
         "byteRange": {
          "end": "14"
         },
         "codepointRange": {
          "end": "14"
         },
         "contentLocations": [
          {
           "recordLocation": {
              "fieldId": {
               "name": "phone"
              },
              "tableLocation": {
              }
           }
          }
         ]
      },
      "createTime": "2019-03-08T23:55:10.980Z"
     }
    ]
  }
}

文本与结构化文本

对文本进行结构化可以帮助提供上下文。如果以字符串形式来检查与前述示例中的请求相同的请求(即,仅采用“John Doe, (206) 555-0123”形式),则提供的结果准确性会降低。这是因为敏感数据保护对于数字用途所具备的上下文线索较少。可能的话,请考虑将字符串解析为表对象,以获得最准确的扫描结果。