Menghitung k-anonymity untuk set data

K-anonymity adalah properti set data yang menunjukkan pengidentifikasian ulang datanya. Set data bersifat k-anonim jika quasi-ID untuk setiap orang dalam set data identik dengan setidaknya k – 1 orang lain yang juga ada dalam set data.

Anda dapat menghitung nilai k-anonymity berdasarkan satu atau beberapa kolom, atau kolom, set data. Topik ini menunjukkan cara menghitung nilai k-anonymity untuk set data menggunakan Perlindungan Data Sensitif. Untuk informasi selengkapnya tentang anonimitas k atau analisis risiko secara umum, lihat topik konsep analisis risiko sebelum melanjutkan.

Sebelum memulai

Sebelum melanjutkan, pastikan Anda telah melakukan hal berikut:

  1. Login ke Akun Google Anda.
  2. Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.
  3. Buka pemilih project
  4. Pastikan penagihan diaktifkan untuk project Google Cloud Anda. Pelajari cara mengonfirmasi bahwa penagihan diaktifkan untuk project Anda.
  5. Aktifkan Perlindungan Data Sensitif.
  6. Aktifkan Perlindungan Data Sensitif

  7. Pilih set data BigQuery yang akan dianalisis. Perlindungan Data Sensitif menghitung metrik anonimitas k dengan memindai tabel BigQuery.
  8. Tentukan ID (jika ada) dan setidaknya satu quasi-ID dalam set data. Untuk mengetahui informasi selengkapnya, lihat Istilah dan teknik analisis risiko.

Menghitung k-anonymity

Perlindungan Data Sensitif melakukan analisis risiko setiap kali tugas analisis risiko dijalankan. Anda harus membuat tugas terlebih dahulu, baik dengan menggunakan konsol Google Cloud, mengirim permintaan DLP API, atau menggunakan library klien Perlindungan Data Sensitif.

Konsol

  1. Di konsol Google Cloud, buka halaman Create risk analysis.

    Buka Buat analisis risiko

  2. Di bagian Pilih data input, tentukan tabel BigQuery yang akan dipindai dengan memasukkan project ID project yang berisi tabel, ID set data tabel, dan nama tabel.

  3. Di bagian Metrik privasi untuk dihitung, pilih k-anonimitas.

  4. Di bagian ID Tugas, Anda dapat memberikan ID kustom ke tugas secara opsional dan memilih lokasi resource tempat Perlindungan Data Sensitif akan memproses data Anda. Setelah selesai, klik Lanjutkan.

  5. Di bagian Define fields, Anda menentukan ID dan quasi-ID untuk tugas risiko anonimitas k. Perlindungan Data Sensitif mengakses metadata tabel BigQuery yang Anda tentukan di langkah sebelumnya dan mencoba mengisi daftar kolom.

    1. Pilih kotak centang yang sesuai untuk menentukan kolom sebagai ID atau quasi-ID (QI). Anda harus memilih 0 atau 1 ID dan minimal 1 quasi-ID.
    2. Jika Perlindungan Data Sensitif tidak dapat mengisi kolom, klik Masukkan nama kolom untuk memasukkan satu atau beberapa kolom secara manual dan menetapkan setiap kolom sebagai ID atau quasi-ID. Setelah selesai, klik Lanjutkan.
  6. Di bagian Tambahkan tindakan, Anda dapat menambahkan tindakan opsional untuk dilakukan saat tugas risiko selesai. Opsi yang tersedia adalah:

    • Simpan ke BigQuery: Menyimpan hasil pemindaian analisis risiko ke tabel BigQuery.
    • Publikasikan ke Pub/Sub: Memublikasikan notifikasi ke topik Pub/Sub.

    • Beri tahu melalui email: Mengirim email kepada Anda yang berisi hasil. Setelah selesai, klik Buat.

Tugas analisis risiko k-anonymity akan segera dimulai.

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.Action.Types;
using static Google.Cloud.Dlp.V2.PrivacyMetric.Types;

public class RiskAnalysisCreateKAnonymity
{
    public static AnalyzeDataSourceRiskDetails.Types.KAnonymityResult KAnonymity(
        string callingProjectId,
        string tableProjectId,
        string datasetId,
        string tableId,
        string topicId,
        string subscriptionId,
        IEnumerable<FieldId> quasiIds)
    {
        var dlp = DlpServiceClient.Create();

        // Construct + submit the job
        var KAnonymityConfig = new KAnonymityConfig
        {
            QuasiIds = { quasiIds }
        };

        var config = new RiskAnalysisJobConfig
        {
            PrivacyMetric = new PrivacyMetric
            {
                KAnonymityConfig = KAnonymityConfig
            },
            SourceTable = new BigQueryTable
            {
                ProjectId = tableProjectId,
                DatasetId = datasetId,
                TableId = tableId
            },
            Actions =
            {
                new Google.Cloud.Dlp.V2.Action
                {
                    PubSub = new PublishToPubSub
                    {
                        Topic = $"projects/{callingProjectId}/topics/{topicId}"
                    }
                }
            }
        };

        var submittedJob = dlp.CreateDlpJob(
            new CreateDlpJobRequest
            {
                ParentAsProjectName = new ProjectName(callingProjectId),
                RiskJob = config
            });

        // Listen to pub/sub for the job
        var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId);
        var subscriber = SubscriberClient.CreateAsync(
            subscriptionName).Result;

        // SimpleSubscriber runs your message handle function on multiple
        // threads to maximize throughput.
        var done = new ManualResetEventSlim(false);
        subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == submittedJob.Name)
            {
                Thread.Sleep(500); // Wait for DLP API results to become consistent
                done.Set();
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs
        subscriber.StopAsync(CancellationToken.None).Wait();

        // Process results
        var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(submittedJob.Name)
        });

        var result = resultJob.RiskDetails.KAnonymityResult;

        for (var bucketIdx = 0; bucketIdx < result.EquivalenceClassHistogramBuckets.Count; bucketIdx++)
        {
            var bucket = result.EquivalenceClassHistogramBuckets[bucketIdx];
            Console.WriteLine($"Bucket {bucketIdx}");
            Console.WriteLine($"  Bucket size range: [{bucket.EquivalenceClassSizeLowerBound}, {bucket.EquivalenceClassSizeUpperBound}].");
            Console.WriteLine($"  {bucket.BucketSize} unique value(s) total.");

            foreach (var bucketValue in bucket.BucketValues)
            {
                // 'UnpackValue(x)' is a prettier version of 'x.toString()'
                Console.WriteLine($"    Quasi-ID values: [{String.Join(',', bucketValue.QuasiIdsValues.Select(x => UnpackValue(x)))}]");
                Console.WriteLine($"    Class size: {bucketValue.EquivalenceClassSize}");
            }
        }

        return result;
    }

    public static string UnpackValue(Value protoValue)
    {
        var jsonValue = JsonConvert.DeserializeObject<Dictionary<string, object>>(protoValue.ToString());
        return jsonValue.Values.ElementAt(0).ToString();
    }
}

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// riskKAnonymity computes the risk of the given columns using K Anonymity.
func riskKAnonymity(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID string, columnNames ...string) error {
	// projectID := "my-project-id"
	// dataProject := "bigquery-public-data"
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// datasetID := "nhtsa_traffic_fatalities"
	// tableID := "accident_2015"
	// columnNames := "state_number" "county"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	topicExists, err := t.Exists(ctx)
	if err != nil {
		return err
	}
	if !topicExists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	subExists, err := s.Exists(ctx)
	if err != nil {
		return err
	}
	if !subExists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Build the QuasiID slice.
	var q []*dlppb.FieldId
	for _, c := range columnNames {
		q = append(q, &dlppb.FieldId{Name: c})
	}

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_RiskJob{
			RiskJob: &dlppb.RiskAnalysisJobConfig{
				// PrivacyMetric configures what to compute.
				PrivacyMetric: &dlppb.PrivacyMetric{
					Type: &dlppb.PrivacyMetric_KAnonymityConfig_{
						KAnonymityConfig: &dlppb.PrivacyMetric_KAnonymityConfig{
							QuasiIds: q,
						},
					},
				},
				// SourceTable describes where to find the data.
				SourceTable: &dlppb.BigQueryTable{
					ProjectId: dataProject,
					DatasetId: datasetID,
					TableId:   tableID,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the risk job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the risk job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()
		time.Sleep(500 * time.Millisecond)
		j, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "GetDlpJob: %v", err)
			return
		}
		h := j.GetRiskDetails().GetKAnonymityResult().GetEquivalenceClassHistogramBuckets()
		for i, b := range h {
			fmt.Fprintf(w, "Histogram bucket %v\n", i)
			fmt.Fprintf(w, "  Size range: [%v,%v]\n", b.GetEquivalenceClassSizeLowerBound(), b.GetEquivalenceClassSizeUpperBound())
			fmt.Fprintf(w, "  %v unique values total\n", b.GetBucketSize())
			for _, v := range b.GetBucketValues() {
				var qvs []string
				for _, qv := range v.GetQuasiIdsValues() {
					qvs = append(qvs, qv.String())
				}
				fmt.Fprintf(w, "    QuasiID values: %s\n", strings.Join(qvs, ", "))
				fmt.Fprintf(w, "    Class size: %v\n", v.GetEquivalenceClassSize())
			}
		}
		// Stop listening for more messages.
		cancel()
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.Action.PublishToPubSub;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult.KAnonymityEquivalenceClass;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult.KAnonymityHistogramBucket;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PrivacyMetric;
import com.google.privacy.dlp.v2.PrivacyMetric.KAnonymityConfig;
import com.google.privacy.dlp.v2.RiskAnalysisJobConfig;
import com.google.privacy.dlp.v2.Value;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;

@SuppressWarnings("checkstyle:AbbreviationAsWordInName")
class RiskAnalysisKAnonymity {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String datasetId = "your-bigquery-dataset-id";
    String tableId = "your-bigquery-table-id";
    String topicId = "pub-sub-topic";
    String subscriptionId = "pub-sub-subscription";
    calculateKAnonymity(projectId, datasetId, tableId, topicId, subscriptionId);
  }

  public static void calculateKAnonymity(
      String projectId, String datasetId, String tableId, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the BigQuery table to analyze
      BigQueryTable bigQueryTable =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(datasetId)
              .setTableId(tableId)
              .build();

      // These values represent the column names of quasi-identifiers to analyze
      List<String> quasiIds = Arrays.asList("Age", "Mystery");

      // Configure the privacy metric for the job
      List<FieldId> quasiIdFields =
          quasiIds.stream()
              .map(columnName -> FieldId.newBuilder().setName(columnName).build())
              .collect(Collectors.toList());
      KAnonymityConfig kanonymityConfig =
          KAnonymityConfig.newBuilder().addAllQuasiIds(quasiIdFields).build();
      PrivacyMetric privacyMetric =
          PrivacyMetric.newBuilder().setKAnonymityConfig(kanonymityConfig).build();

      // Create action to publish job status notifications over Google Cloud Pub/Sub
      ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId);
      PublishToPubSub publishToPubSub =
          PublishToPubSub.newBuilder().setTopic(topicName.toString()).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the risk analysis job to perform
      RiskAnalysisJobConfig riskAnalysisJobConfig =
          RiskAnalysisJobConfig.newBuilder()
              .setSourceTable(bigQueryTable)
              .setPrivacyMetric(privacyMetric)
              .addActions(action)
              .build();

      // Build the request to be sent by the client
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setRiskJob(riskAnalysisJobConfig)
              .build();

      // Send the request to the API using the client
      DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Build a request to get the completed job
      GetDlpJobRequest getDlpJobRequest =
          GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();

      // Retrieve completed job status
      DlpJob completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest);
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());

      // Get the result and parse through and process the information
      KAnonymityResult kanonymityResult = completedJob.getRiskDetails().getKAnonymityResult();
      List<KAnonymityHistogramBucket> histogramBucketList =
          kanonymityResult.getEquivalenceClassHistogramBucketsList();
      for (KAnonymityHistogramBucket result : histogramBucketList) {
        System.out.printf(
            "Bucket size range: [%d, %d]\n",
            result.getEquivalenceClassSizeLowerBound(), result.getEquivalenceClassSizeUpperBound());

        for (KAnonymityEquivalenceClass bucket : result.getBucketValuesList()) {
          List<String> quasiIdValues =
              bucket.getQuasiIdsValuesList().stream()
                  .map(Value::toString)
                  .collect(Collectors.toList());

          System.out.println("\tQuasi-ID values: " + String.join(", ", quasiIdValues));
          System.out.println("\tClass size: " + bucket.getEquivalenceClassSize());
        }
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const tableProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// A set of columns that form a composite key ('quasi-identifiers')
// const quasiIds = [{ name: 'age' }, { name: 'city' }];
async function kAnonymityAnalysis() {
  const sourceTable = {
    projectId: tableProjectId,
    datasetId: datasetId,
    tableId: tableId,
  };
  // Construct request for creating a risk analysis job

  const request = {
    parent: `projects/${projectId}/locations/global`,
    riskJob: {
      privacyMetric: {
        kAnonymityConfig: {
          quasiIds: quasiIds,
        },
      },
      sourceTable: sourceTable,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Create helper function for unpacking values
  const getValue = obj => obj[Object.keys(obj)[0]];

  // Run risk analysis job
  const [topicResponse] = await pubsub.topic(topicId).get();
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  console.log(`Job created. Job name: ${jobName}`);
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  setTimeout(() => {
    console.log(' Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  const histogramBuckets =
    job.riskDetails.kAnonymityResult.equivalenceClassHistogramBuckets;

  histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => {
    console.log(`Bucket ${histogramBucketIdx}:`);
    console.log(
      `  Bucket size range: [${histogramBucket.equivalenceClassSizeLowerBound}, ${histogramBucket.equivalenceClassSizeUpperBound}]`
    );

    histogramBucket.bucketValues.forEach(valueBucket => {
      const quasiIdValues = valueBucket.quasiIdsValues
        .map(getValue)
        .join(', ');
      console.log(`  Quasi-ID values: {${quasiIdValues}}`);
      console.log(`  Class size: ${valueBucket.equivalenceClassSize}`);
    });
  });
}
await kAnonymityAnalysis();

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\PrivacyMetric\KAnonymityConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Computes the k-anonymity of a column set in a Google BigQuery table.
 *
 * @param string    $callingProjectId  The project ID to run the API call under
 * @param string    $dataProjectId     The project ID containing the target Datastore
 * @param string    $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string    $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string    $datasetId         The ID of the dataset to inspect
 * @param string    $tableId           The ID of the table to inspect
 * @param string[]  $quasiIdNames      Array columns that form a composite key (quasi-identifiers)
 */
function k_anonymity(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $datasetId,
    string $tableId,
    array $quasiIdNames
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Construct risk analysis config
    $quasiIds = array_map(
        function ($id) {
            return (new FieldId())->setName($id);
        },
        $quasiIdNames
    );

    $statsConfig = (new KAnonymityConfig())
        ->setQuasiIds($quasiIds);

    $privacyMetric = (new PrivacyMetric())
        ->setKAnonymityConfig($statsConfig);

    // Construct items to be analyzed
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($dataProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct risk analysis job config to run
    $riskJob = (new RiskAnalysisJobConfig())
        ->setPrivacyMetric($privacyMetric)
        ->setSourceTable($bigqueryTable)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setRiskJob($riskJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $histBuckets = $job->getRiskDetails()->getKAnonymityResult()->getEquivalenceClassHistogramBuckets();

            foreach ($histBuckets as $bucketIndex => $histBucket) {
                // Print bucket stats
                printf('Bucket %s:' . PHP_EOL, $bucketIndex);
                printf(
                    '  Bucket size range: [%s, %s]' . PHP_EOL,
                    $histBucket->getEquivalenceClassSizeLowerBound(),
                    $histBucket->getEquivalenceClassSizeUpperBound()
                );

                // Print bucket values
                foreach ($histBucket->getBucketValues() as $percent => $valueBucket) {
                    // Pretty-print quasi-ID values
                    print('  Quasi-ID values:' . PHP_EOL);
                    foreach ($valueBucket->getQuasiIdsValues() as $index => $value) {
                        print('    ' . $value->serializeToJsonString() . PHP_EOL);
                    }
                    printf(
                        '  Class size: %s' . PHP_EOL,
                        $valueBucket->getEquivalenceClassSize()
                    );
                }
            }

            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import concurrent.futures

from typing import List

import google.cloud.dlp
from google.cloud.dlp_v2 import types
import google.cloud.pubsub


def k_anonymity_analysis(
    project: str,
    table_project_id: str,
    dataset_id: str,
    table_id: str,
    topic_id: str,
    subscription_id: str,
    quasi_ids: List[str],
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to compute the k-anonymity of a
        column set in a Google BigQuery table.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        table_project_id: The Google Cloud project id where the BigQuery table
            is stored.
        dataset_id: The id of the dataset to inspect.
        table_id: The id of the table to inspect.
        topic_id: The name of the Pub/Sub topic to notify once the job
            completes.
        subscription_id: The name of the Pub/Sub subscription to use when
            listening for job completion notifications.
        quasi_ids: A set of columns that form a composite key.
        timeout: The number of seconds to wait for a response from the API.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Create helper function for unpacking values
    def get_values(obj: types.Value) -> int:
        return int(obj.integer_value)

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Location info of the BigQuery table.
    source_table = {
        "project_id": table_project_id,
        "dataset_id": dataset_id,
        "table_id": table_id,
    }

    # Convert quasi id list to Protobuf type
    def map_fields(field: str) -> dict:
        return {"name": field}

    quasi_ids = map(map_fields, quasi_ids)

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Configure risk analysis job
    # Give the name of the numeric column to compute risk metrics for
    risk_job = {
        "privacy_metric": {"k_anonymity_config": {"quasi_ids": quasi_ids}},
        "source_table": source_table,
        "actions": actions,
    }

    # Call API to start risk analysis job
    operation = dlp.create_dlp_job(request={"parent": parent, "risk_job": risk_job})

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        if message.attributes["DlpJobName"] == operation.name:
            # This is the message we're looking for, so acknowledge it.
            message.ack()

            # Now that the job is done, fetch the results and print them.
            job = dlp.get_dlp_job(request={"name": operation.name})
            print(f"Job name: {job.name}")
            histogram_buckets = (
                job.risk_details.k_anonymity_result.equivalence_class_histogram_buckets
            )
            # Print bucket stats
            for i, bucket in enumerate(histogram_buckets):
                print(f"Bucket {i}:")
                if bucket.equivalence_class_size_lower_bound:
                    print(
                        "   Bucket size range: [{}, {}]".format(
                            bucket.equivalence_class_size_lower_bound,
                            bucket.equivalence_class_size_upper_bound,
                        )
                    )
                    for value_bucket in bucket.bucket_values:
                        print(
                            "   Quasi-ID values: {}".format(
                                map(get_values, value_bucket.quasi_ids_values)
                            )
                        )
                        print(
                            "   Class size: {}".format(
                                value_bucket.equivalence_class_size
                            )
                        )
            subscription.set_result(None)
        else:
            # This is not the message we're looking for.
            message.drop()

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)
    subscription = subscriber.subscribe(subscription_path, callback)

    try:
        subscription.result(timeout=timeout)
    except concurrent.futures.TimeoutError:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )
        subscription.close()

REST

Untuk menjalankan tugas analisis risiko baru guna menghitung anonimitas k, kirim permintaan ke resource projects.dlpJobs, dengan PROJECT_ID menunjukkan ID project Anda:

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs

Permintaan berisi objek RiskAnalysisJobConfig, yang terdiri dari hal berikut:

  • Objek PrivacyMetric. Di sinilah Anda menentukan bahwa Anda menghitung k-anonymity dengan menyertakan objek KAnonymityConfig.k

  • Objek BigQueryTable. Tentukan tabel BigQuery yang akan dipindai dengan menyertakan semua hal berikut:

    • projectId: Project ID project yang berisi tabel.
    • datasetId: ID set data tabel.
    • tableId: Nama tabel.
  • Kumpulan satu atau beberapa objek Action, yang mewakili tindakan yang akan dijalankan, dalam urutan yang diberikan, pada penyelesaian tugas. Setiap objek Action dapat berisi salah satu tindakan berikut:

    Dalam objek KAnonymityConfig, Anda menentukan hal berikut:

    • quasiIds[]: Satu atau beberapa quasi-ID (objek FieldId) untuk dipindai dan digunakan untuk menghitung anonimitas k. Jika Anda menentukan beberapa quasi-ID, ID tersebut dianggap sebagai satu kunci gabungan. Jenis data berulang dan struct tidak didukung, tetapi kolom bertingkat didukung selama kolom tersebut bukan struct itu sendiri atau bertingkat dalam kolom berulang.
    • entityId: Nilai ID opsional yang, jika ditetapkan, menunjukkan bahwa semua baris yang sesuai dengan setiap entityId yang berbeda harus dikelompokkan bersama untuk komputasi anonimitas k. Biasanya, entityId akan berupa kolom yang mewakili pengguna unik, seperti ID pelanggan atau ID pengguna. Jika entityId muncul di beberapa baris dengan nilai quasi-ID yang berbeda, baris ini akan digabungkan untuk membentuk multiset yang akan digunakan sebagai quasi-ID untuk entitas tersebut. Untuk informasi selengkapnya tentang ID entity, lihat ID entity dan komputasi k-anonimitas dalam topik konseptual Analisis risiko.

Segera setelah Anda mengirim permintaan ke DLP API, API tersebut akan memulai tugas analisis risiko.

Mencantumkan tugas analisis risiko yang telah selesai

Anda dapat melihat daftar tugas analisis risiko yang telah dijalankan dalam project saat ini.

Konsol

Untuk mencantumkan tugas analisis risiko yang sedang berjalan dan yang sebelumnya dijalankan di konsol Google Cloud, lakukan hal berikut:

  1. Di konsol Google Cloud, buka Sensitive Data Protection.

    Buka Perlindungan Data Sensitif

  2. Klik tab Tugas & pemicu tugas di bagian atas halaman.

  3. Klik tab Tugas risiko.

Lowongan pekerjaan risiko akan muncul.

Protokol

Untuk membuat daftar tugas analisis risiko yang sedang berjalan dan yang sebelumnya telah berjalan, kirim permintaan GET ke resource projects.dlpJobs. Menambahkan filter jenis tugas (?type=RISK_ANALYSIS_JOB) akan mempersempit respons hanya ke tugas analisis risiko.

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs?type=RISK_ANALYSIS_JOB

Respons yang Anda terima berisi representasi JSON dari semua tugas analisis risiko saat ini dan sebelumnya.

Melihat hasil tugas k-anonymity

Sensitive Data Protection di konsol Google Cloud menampilkan visualisasi bawaan untuk tugas anonimitas k yang telah selesai. Setelah mengikuti petunjuk di bagian sebelumnya, dari listingan tugas analisis risiko, pilih tugas yang ingin Anda lihat hasilnya. Dengan asumsi tugas telah berhasil dijalankan, bagian atas halaman Detail analisis risiko akan terlihat seperti ini:

Di bagian atas halaman terdapat informasi tentang tugas risiko anonimitas k, termasuk ID tugasnya dan, di bagian Container, lokasi resource-nya.

Untuk melihat hasil penghitungan k-anonymity, klik tab K-anonymity. Untuk melihat konfigurasi tugas analisis risiko, klik tab Configuration.

Tab K-anonymity pertama-tama mencantumkan ID entitas (jika ada) dan quasi-ID yang digunakan untuk menghitung k-anonymity.

Diagram risiko

Diagram Risiko re-identifikasi memetakan, pada sumbu y, potensi persentase kehilangan data untuk baris unik dan kombinasi quasi-ID unik untuk mencapai, pada sumbu x, nilai k-anonymity. Warna grafik juga menunjukkan potensi risiko. Nuansa biru yang lebih gelap menunjukkan risiko yang lebih tinggi, sedangkan nuansa yang lebih terang menunjukkan risiko yang lebih rendah.

Nilai anonimitas k yang lebih tinggi menunjukkan risiko identifikasi ulang yang lebih rendah. Namun, untuk mencapai nilai k-anonymity k yang lebih tinggi, Anda harus menghapus persentase total baris yang lebih tinggi dan kombinasi quasi-ID unik yang lebih tinggi, yang dapat menurunkan utilitas data. Untuk melihat nilai potensi kehilangan persentase tertentu untuk nilai anonimitas k tertentu, arahkan kursor ke diagram. Seperti yang ditunjukkan pada screenshot, tooltip akan muncul di diagram.

Untuk melihat detail selengkapnya tentang nilai k-anonymity k tertentu, klik titik data yang sesuai. Penjelasan mendetail ditampilkan di bawah diagram dan contoh tabel data muncul di bagian bawah halaman.

Tabel data contoh risiko

Komponen kedua di halaman hasil tugas risiko adalah tabel data contoh. Laporan ini menampilkan kombinasi quasi-ID untuk nilai k-anonymity target tertentu.k

Kolom pertama tabel mencantumkan nilai k-anonymity. Klik nilai k-anonymity k untuk melihat data sampel yang sesuai yang perlu dihapus untuk mencapai nilai tersebut.

Kolom kedua menampilkan potensi kehilangan data masing-masing baris unik dan kombinasi quasi-ID, serta jumlah grup dengan minimal k data dan jumlah total data.

Kolom terakhir menampilkan contoh grup yang memiliki kombinasi quasi-ID, bersama dengan jumlah data yang ada untuk kombinasi tersebut.

Mengambil detail tugas menggunakan REST

Untuk mengambil hasil tugas analisis risiko anonimitas k menggunakan REST API, kirim permintaan GET berikut ke resource projects.dlpJobs. Ganti PROJECT_ID dengan project ID Anda dan JOB_ID dengan ID tugas yang ingin Anda dapatkan hasilnya. ID tugas ditampilkan saat Anda memulai tugas, dan juga dapat diambil dengan mencantumkan semua tugas.

GET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID

Permintaan akan menampilkan objek JSON yang berisi instance tugas. Hasil analisis berada di dalam kunci "riskDetails", dalam objek AnalyzeDataSourceRiskDetails. Untuk informasi selengkapnya, lihat referensi API untuk resource DlpJob.

Contoh kode: Menghitung k-anonymity dengan ID entity

Contoh ini membuat tugas analisis risiko yang menghitung k-anonymity dengan ID entity.

Untuk informasi selengkapnya tentang ID entitas, lihat ID entitas dan komputasi k-anonimitas.

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using System;
using System.Collections.Generic;
using System.Linq;
using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Newtonsoft.Json;

public class CalculateKAnonymityOnDataset
{
    public static DlpJob CalculateKAnonymitty(
        string projectId,
        string datasetId,
        string sourceTableId,
        string outputTableId)
    {
        // Construct the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct the k-anonymity config by setting the EntityId as user_id column
        // and two quasi-identifiers columns.
        var kAnonymity = new PrivacyMetric.Types.KAnonymityConfig
        {
            EntityId = new EntityId
            {
                Field = new FieldId { Name = "Name" }
            },
            QuasiIds =
            {
                new FieldId { Name = "Age" },
                new FieldId { Name = "Mystery" }
            }
        };

        // Construct risk analysis job config by providing the source table, privacy metric
        // and action to save the findings to a BigQuery table.
        var riskJob = new RiskAnalysisJobConfig
        {
            SourceTable = new BigQueryTable
            {
                ProjectId = projectId,
                DatasetId = datasetId,
                TableId = sourceTableId,
            },
            PrivacyMetric = new PrivacyMetric
            {
                KAnonymityConfig = kAnonymity,
            },
            Actions =
            {
                new Google.Cloud.Dlp.V2.Action
                {
                    SaveFindings = new Google.Cloud.Dlp.V2.Action.Types.SaveFindings
                    {
                        OutputConfig = new OutputStorageConfig
                        {
                            Table = new BigQueryTable
                            {
                                ProjectId = projectId,
                                DatasetId = datasetId,
                                TableId = outputTableId
                            }
                        }
                    }
                }
            }
        };

        // Construct the request by providing RiskJob object created above.
        var request = new CreateDlpJobRequest
        {
            ParentAsLocationName = new LocationName(projectId, "global"),
            RiskJob = riskJob
        };

        // Send the job request.
        DlpJob response = dlp.CreateDlpJob(request);

        Console.WriteLine($"Job created successfully. Job name: ${response.Name}");

        return response;
    }
}

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
)

// Uses the Data Loss Prevention API to compute the k-anonymity of a
// column set in a Google BigQuery table.
func calculateKAnonymityWithEntityId(w io.Writer, projectID, datasetId, tableId string, columnNames ...string) error {
	// projectID := "your-project-id"
	// datasetId := "your-bigquery-dataset-id"
	// tableId := "your-bigquery-table-id"
	// columnNames := "age" "job_title"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the BigQuery table to analyze
	bigQueryTable := &dlppb.BigQueryTable{
		ProjectId: "bigquery-public-data",
		DatasetId: "samples",
		TableId:   "wikipedia",
	}

	// Configure the privacy metric for the job
	// Build the QuasiID slice.
	var q []*dlppb.FieldId
	for _, c := range columnNames {
		q = append(q, &dlppb.FieldId{Name: c})
	}

	entityId := &dlppb.EntityId{
		Field: &dlppb.FieldId{
			Name: "id",
		},
	}

	kAnonymityConfig := &dlppb.PrivacyMetric_KAnonymityConfig{
		QuasiIds: q,
		EntityId: entityId,
	}

	privacyMetric := &dlppb.PrivacyMetric{
		Type: &dlppb.PrivacyMetric_KAnonymityConfig_{
			KAnonymityConfig: kAnonymityConfig,
		},
	}

	// Specify the bigquery table to store the findings.
	// The "test_results" table in the given BigQuery dataset will be created if it doesn't
	// already exist.
	outputbigQueryTable := &dlppb.BigQueryTable{
		ProjectId: projectID,
		DatasetId: datasetId,
		TableId:   tableId,
	}

	// Create action to publish job status notifications to BigQuery table.
	outputStorageConfig := &dlppb.OutputStorageConfig{
		Type: &dlppb.OutputStorageConfig_Table{
			Table: outputbigQueryTable,
		},
	}

	findings := &dlppb.Action_SaveFindings{
		OutputConfig: outputStorageConfig,
	}

	action := &dlppb.Action{
		Action: &dlppb.Action_SaveFindings_{
			SaveFindings: findings,
		},
	}

	// Configure the risk analysis job to perform
	riskAnalysisJobConfig := &dlppb.RiskAnalysisJobConfig{
		PrivacyMetric: privacyMetric,
		SourceTable:   bigQueryTable,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Build the request to be sent by the client
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_RiskJob{
			RiskJob: riskAnalysisJobConfig,
		},
	}

	// Send the request to the API using the client
	dlpJob, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Created job: %v\n", dlpJob.GetName())

	// Build a request to get the completed job
	getDlpJobReq := &dlppb.GetDlpJobRequest{
		Name: dlpJob.Name,
	}

	timeout := 15 * time.Minute
	startTime := time.Now()

	var completedJob *dlppb.DlpJob

	// Wait for job completion
	for time.Since(startTime) <= timeout {
		completedJob, err = client.GetDlpJob(ctx, getDlpJobReq)
		if err != nil {
			return err
		}

		if completedJob.GetState() == dlppb.DlpJob_DONE {
			break
		}

		time.Sleep(30 * time.Second)

	}

	if completedJob.GetState() != dlppb.DlpJob_DONE {
		fmt.Println("Job did not complete within 15 minutes.")
	}

	// Retrieve completed job status
	fmt.Fprintf(w, "Job status: %v", completedJob.State)
	fmt.Fprintf(w, "Job name: %v", dlpJob.Name)

	// Get the result and parse through and process the information
	kanonymityResult := completedJob.GetRiskDetails().GetKAnonymityResult()

	for _, result := range kanonymityResult.GetEquivalenceClassHistogramBuckets() {
		fmt.Fprintf(w, "Bucket size range: [%d, %d]\n", result.GetEquivalenceClassSizeLowerBound(), result.GetEquivalenceClassSizeLowerBound())

		for _, bucket := range result.GetBucketValues() {
			quasiIdValues := []string{}
			for _, v := range bucket.GetQuasiIdsValues() {
				quasiIdValues = append(quasiIdValues, v.GetStringValue())
			}
			fmt.Fprintf(w, "\tQuasi-ID values: %s", strings.Join(quasiIdValues, ","))
			fmt.Fprintf(w, "\tClass size: %d", bucket.EquivalenceClassSize)
		}
	}

	return nil

}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.Action.SaveFindings;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult.KAnonymityEquivalenceClass;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.KAnonymityResult.KAnonymityHistogramBucket;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.EntityId;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.OutputStorageConfig;
import com.google.privacy.dlp.v2.PrivacyMetric;
import com.google.privacy.dlp.v2.PrivacyMetric.KAnonymityConfig;
import com.google.privacy.dlp.v2.RiskAnalysisJobConfig;
import com.google.privacy.dlp.v2.Value;
import java.io.IOException;
import java.time.Duration;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;

@SuppressWarnings("checkstyle:AbbreviationAsWordInName")
public class RiskAnalysisKAnonymityWithEntityId {

  public static void main(String[] args) throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    // The Google Cloud project id to use as a parent resource.
    String projectId = "your-project-id";
    // The BigQuery dataset id to be used and the reference table name to be inspected.
    String datasetId = "your-bigquery-dataset-id";
    String tableId = "your-bigquery-table-id";
    calculateKAnonymityWithEntityId(projectId, datasetId, tableId);
  }

  // Uses the Data Loss Prevention API to compute the k-anonymity of a column set in a Google
  // BigQuery table.
  public static void calculateKAnonymityWithEntityId(
      String projectId, String datasetId, String tableId) throws IOException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

      // Specify the BigQuery table to analyze
      BigQueryTable bigQueryTable =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(datasetId)
              .setTableId(tableId)
              .build();

      // These values represent the column names of quasi-identifiers to analyze
      List<String> quasiIds = Arrays.asList("Age", "Mystery");

      // Create a list of FieldId objects based on the provided list of column names.
      List<FieldId> quasiIdFields =
          quasiIds.stream()
              .map(columnName -> FieldId.newBuilder().setName(columnName).build())
              .collect(Collectors.toList());

      // Specify the unique identifier in the source table for the k-anonymity analysis.
      FieldId uniqueIdField = FieldId.newBuilder().setName("Name").build();
      EntityId entityId = EntityId.newBuilder().setField(uniqueIdField).build();
      KAnonymityConfig kanonymityConfig = KAnonymityConfig.newBuilder()
              .addAllQuasiIds(quasiIdFields)
              .setEntityId(entityId)
              .build();

      // Configure the privacy metric to compute for re-identification risk analysis.
      PrivacyMetric privacyMetric =
          PrivacyMetric.newBuilder().setKAnonymityConfig(kanonymityConfig).build();

      // Specify the bigquery table to store the findings.
      // The "test_results" table in the given BigQuery dataset will be created if it doesn't
      // already exist.
      BigQueryTable outputbigQueryTable =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(datasetId)
              .setTableId("test_results")
              .build();

      // Create action to publish job status notifications to BigQuery table.
      OutputStorageConfig outputStorageConfig =
          OutputStorageConfig.newBuilder().setTable(outputbigQueryTable).build();
      SaveFindings findings =
          SaveFindings.newBuilder().setOutputConfig(outputStorageConfig).build();
      Action action = Action.newBuilder().setSaveFindings(findings).build();

      // Configure the risk analysis job to perform
      RiskAnalysisJobConfig riskAnalysisJobConfig =
          RiskAnalysisJobConfig.newBuilder()
              .setSourceTable(bigQueryTable)
              .setPrivacyMetric(privacyMetric)
              .addActions(action)
              .build();

      // Build the request to be sent by the client
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setRiskJob(riskAnalysisJobConfig)
              .build();

      // Send the request to the API using the client
      DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);

      // Build a request to get the completed job
      GetDlpJobRequest getDlpJobRequest =
          GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();

      DlpJob completedJob = null;
      // Wait for job completion
      try {
        Duration timeout = Duration.ofMinutes(15);
        long startTime = System.currentTimeMillis();
        do {
          completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest);
          TimeUnit.SECONDS.sleep(30);
        } while (completedJob.getState() != DlpJob.JobState.DONE
            && System.currentTimeMillis() - startTime <= timeout.toMillis());
      } catch (InterruptedException e) {
        System.out.println("Job did not complete within 15 minutes.");
      }

      // Retrieve completed job status
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());

      // Get the result and parse through and process the information
      KAnonymityResult kanonymityResult = completedJob.getRiskDetails().getKAnonymityResult();
      for (KAnonymityHistogramBucket result :
          kanonymityResult.getEquivalenceClassHistogramBucketsList()) {
        System.out.printf(
            "Bucket size range: [%d, %d]\n",
            result.getEquivalenceClassSizeLowerBound(), result.getEquivalenceClassSizeUpperBound());

        for (KAnonymityEquivalenceClass bucket : result.getBucketValuesList()) {
          List<String> quasiIdValues =
              bucket.getQuasiIdsValuesList().stream()
                  .map(Value::toString)
                  .collect(Collectors.toList());

          System.out.println("\tQuasi-ID values: " + String.join(", ", quasiIdValues));
          System.out.println("\tClass size: " + bucket.getEquivalenceClassSize());
        }
      }
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud Data Loss Prevention library
const DLP = require('@google-cloud/dlp');

// Instantiates a client
const dlp = new DLP.DlpServiceClient();

// The project ID to run the API call under.
// const projectId = "your-project-id";

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const sourceTableId = 'my_source_table';

// The ID of the table where outputs are stored
// const outputTableId = 'my_output_table';

async function kAnonymityWithEntityIds() {
  // Specify the BigQuery table to analyze.
  const sourceTable = {
    projectId: projectId,
    datasetId: datasetId,
    tableId: sourceTableId,
  };

  // Specify the unique identifier in the source table for the k-anonymity analysis.
  const uniqueIdField = {name: 'Name'};

  // These values represent the column names of quasi-identifiers to analyze
  const quasiIds = [{name: 'Age'}, {name: 'Mystery'}];

  // Configure the privacy metric to compute for re-identification risk analysis.
  const privacyMetric = {
    kAnonymityConfig: {
      entityId: {
        field: uniqueIdField,
      },
      quasiIds: quasiIds,
    },
  };
  // Create action to publish job status notifications to BigQuery table.
  const action = [
    {
      saveFindings: {
        outputConfig: {
          table: {
            projectId: projectId,
            datasetId: datasetId,
            tableId: outputTableId,
          },
        },
      },
    },
  ];

  // Configure the risk analysis job to perform.
  const riskAnalysisJob = {
    sourceTable: sourceTable,
    privacyMetric: privacyMetric,
    actions: action,
  };
  // Combine configurations into a request for the service.
  const createDlpJobRequest = {
    parent: `projects/${projectId}/locations/global`,
    riskJob: riskAnalysisJob,
  };

  // Send the request and receive response from the service
  const [createdDlpJob] = await dlp.createDlpJob(createDlpJobRequest);
  const jobName = createdDlpJob.name;

  // Waiting for a maximum of 15 minutes for the job to get complete.
  let job;
  let numOfAttempts = 30;
  while (numOfAttempts > 0) {
    // Fetch DLP Job status
    [job] = await dlp.getDlpJob({name: jobName});

    // Check if the job has completed.
    if (job.state === 'DONE') {
      break;
    }
    if (job.state === 'FAILED') {
      console.log('Job Failed, Please check the configuration.');
      return;
    }
    // Sleep for a short duration before checking the job status again.
    await new Promise(resolve => {
      setTimeout(() => resolve(), 30000);
    });
    numOfAttempts -= 1;
  }

  // Create helper function for unpacking values
  const getValue = obj => obj[Object.keys(obj)[0]];

  // Print out the results.
  const histogramBuckets =
    job.riskDetails.kAnonymityResult.equivalenceClassHistogramBuckets;

  histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => {
    console.log(`Bucket ${histogramBucketIdx}:`);
    console.log(
      `  Bucket size range: [${histogramBucket.equivalenceClassSizeLowerBound}, ${histogramBucket.equivalenceClassSizeUpperBound}]`
    );

    histogramBucket.bucketValues.forEach(valueBucket => {
      const quasiIdValues = valueBucket.quasiIdsValues
        .map(getValue)
        .join(', ');
      console.log(`  Quasi-ID values: {${quasiIdValues}}`);
      console.log(`  Class size: ${valueBucket.equivalenceClassSize}`);
    });
  });
}
await kAnonymityWithEntityIds();

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\SaveFindings;
use Google\Cloud\Dlp\V2\EntityId;
use Google\Cloud\Dlp\V2\PrivacyMetric\KAnonymityConfig;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\OutputStorageConfig;

/**
 * Computes the k-anonymity of a column set in a Google BigQuery table with entity id.
 *
 * @param string    $callingProjectId  The project ID to run the API call under.
 * @param string    $datasetId         The ID of the dataset to inspect.
 * @param string    $tableId           The ID of the table to inspect.
 * @param string[]  $quasiIdNames      Array columns that form a composite key (quasi-identifiers).
 */

function k_anonymity_with_entity_id(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $datasetId,
    string $tableId,
    array  $quasiIdNames
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();

    // Specify the BigQuery table to analyze.
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($callingProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    // Create a list of FieldId objects based on the provided list of column names.
    $quasiIds = array_map(
        function ($id) {
            return (new FieldId())
                ->setName($id);
        },
        $quasiIdNames
    );

    // Specify the unique identifier in the source table for the k-anonymity analysis.
    $statsConfig = (new KAnonymityConfig())
        ->setEntityId((new EntityId())
            ->setField((new FieldId())
                ->setName('Name')))
        ->setQuasiIds($quasiIds);

    // Configure the privacy metric to compute for re-identification risk analysis.
    $privacyMetric = (new PrivacyMetric())
        ->setKAnonymityConfig($statsConfig);

    // Specify the bigquery table to store the findings.
    // The "test_results" table in the given BigQuery dataset will be created if it doesn't
    // already exist.
    $outBigqueryTable = (new BigQueryTable())
        ->setProjectId($callingProjectId)
        ->setDatasetId($datasetId)
        ->setTableId('test_results');

    $outputStorageConfig = (new OutputStorageConfig())
        ->setTable($outBigqueryTable);

    $findings = (new SaveFindings())
        ->setOutputConfig($outputStorageConfig);

    $action = (new Action())
        ->setSaveFindings($findings);

    // Construct risk analysis job config to run.
    $riskJob = (new RiskAnalysisJobConfig())
        ->setPrivacyMetric($privacyMetric)
        ->setSourceTable($bigqueryTable)
        ->setActions([$action]);

    // Submit request.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'riskJob' => $riskJob
    ]);

    $numOfAttempts = 10;
    do {
        printf('Waiting for job to complete' . PHP_EOL);
        sleep(10);
        $job = $dlp->getDlpJob($job->getName());
        if ($job->getState() == JobState::DONE) {
            break;
        }
        $numOfAttempts--;
    } while ($numOfAttempts > 0);

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $histBuckets = $job->getRiskDetails()->getKAnonymityResult()->getEquivalenceClassHistogramBuckets();

            foreach ($histBuckets as $bucketIndex => $histBucket) {
                // Print bucket stats.
                printf('Bucket %s:' . PHP_EOL, $bucketIndex);
                printf(
                    '  Bucket size range: [%s, %s]' . PHP_EOL,
                    $histBucket->getEquivalenceClassSizeLowerBound(),
                    $histBucket->getEquivalenceClassSizeUpperBound()
                );

                // Print bucket values.
                foreach ($histBucket->getBucketValues() as $percent => $valueBucket) {
                    // Pretty-print quasi-ID values.
                    printf('  Quasi-ID values:' . PHP_EOL);
                    foreach ($valueBucket->getQuasiIdsValues() as $index => $value) {
                        print('    ' . $value->serializeToJsonString() . PHP_EOL);
                    }
                    printf(
                        '  Class size: %s' . PHP_EOL,
                        $valueBucket->getEquivalenceClassSize()
                    );
                }
            }

            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import time
from typing import List

import google.cloud.dlp_v2
from google.cloud.dlp_v2 import types


def k_anonymity_with_entity_id(
    project: str,
    source_table_project_id: str,
    source_dataset_id: str,
    source_table_id: str,
    entity_id: str,
    quasi_ids: List[str],
    output_table_project_id: str,
    output_dataset_id: str,
    output_table_id: str,
) -> None:
    """Uses the Data Loss Prevention API to compute the k-anonymity using entity_id
        of a column set in a Google BigQuery table.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        source_table_project_id: The Google Cloud project id where the BigQuery table
            is stored.
        source_dataset_id: The id of the dataset to inspect.
        source_table_id: The id of the table to inspect.
        entity_id: The column name of the table that enables accurately determining k-anonymity
         in the common scenario wherein several rows of dataset correspond to the same sensitive
         information.
        quasi_ids: A set of columns that form a composite key.
        output_table_project_id: The Google Cloud project id where the output BigQuery table
            is stored.
        output_dataset_id: The id of the output BigQuery dataset.
        output_table_id: The id of the output BigQuery table.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Location info of the source BigQuery table.
    source_table = {
        "project_id": source_table_project_id,
        "dataset_id": source_dataset_id,
        "table_id": source_table_id,
    }

    # Specify the bigquery table to store the findings.
    # The output_table_id in the given BigQuery dataset will be created if it doesn't
    # already exist.
    dest_table = {
        "project_id": output_table_project_id,
        "dataset_id": output_dataset_id,
        "table_id": output_table_id,
    }

    # Convert quasi id list to Protobuf type
    def map_fields(field: str) -> dict:
        return {"name": field}

    #  Configure column names of quasi-identifiers to analyze
    quasi_ids = map(map_fields, quasi_ids)

    # Tell the API where to send a notification when the job is complete.
    actions = [{"save_findings": {"output_config": {"table": dest_table}}}]

    # Configure the privacy metric to compute for re-identification risk analysis.
    # Specify the unique identifier in the source table for the k-anonymity analysis.
    privacy_metric = {
        "k_anonymity_config": {
            "entity_id": {"field": {"name": entity_id}},
            "quasi_ids": quasi_ids,
        }
    }

    # Configure risk analysis job.
    risk_job = {
        "privacy_metric": privacy_metric,
        "source_table": source_table,
        "actions": actions,
    }

    # Convert the project id into a full resource id.
    parent = f"projects/{project}/locations/global"

    # Call API to start risk analysis job.
    response = dlp.create_dlp_job(
        request={
            "parent": parent,
            "risk_job": risk_job,
        }
    )
    job_name = response.name
    print(f"Inspection Job started : {job_name}")

    # Waiting for a maximum of 15 minutes for the job to be completed.
    job = dlp.get_dlp_job(request={"name": job_name})
    no_of_attempts = 30
    while no_of_attempts > 0:
        # Check if the job has completed
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.DONE:
            break
        if job.state == google.cloud.dlp_v2.DlpJob.JobState.FAILED:
            print("Job Failed, Please check the configuration.")
            return

        # Sleep for a short duration before checking the job status again
        time.sleep(30)
        no_of_attempts -= 1

        # Get the DLP job status
        job = dlp.get_dlp_job(request={"name": job_name})

    if job.state != google.cloud.dlp_v2.DlpJob.JobState.DONE:
        print("Job did not complete within 15 minutes.")
        return

    # Create helper function for unpacking values
    def get_values(obj: types.Value) -> str:
        return str(obj.string_value)

    # Print out the results.
    print(f"Job name: {job.name}")
    histogram_buckets = (
        job.risk_details.k_anonymity_result.equivalence_class_histogram_buckets
    )
    # Print bucket stats
    for i, bucket in enumerate(histogram_buckets):
        print(f"Bucket {i}:")
        if bucket.equivalence_class_size_lower_bound:
            print(
                f"Bucket size range: [{bucket.equivalence_class_size_lower_bound}, "
                f"{bucket.equivalence_class_size_upper_bound}]"
            )
            for value_bucket in bucket.bucket_values:
                print(
                    f"Quasi-ID values: {get_values(value_bucket.quasi_ids_values[0])}"
                )
                print(f"Class size: {value_bucket.equivalence_class_size}")
        else:
            print("No findings.")

Langkah selanjutnya

  • Pelajari cara menghitung nilai l-diversity untuk set data.
  • Pelajari cara menghitung nilai k-map untuk set data.
  • Pelajari cara menghitung nilai δ-kehadiran untuk set data.