This page describes the specialized Network Function Kubernetes operator that Google Distributed Cloud connected ships with. This operator implements a set of CustomResourceDefinitions (CRDs) that allow Distributed Cloud connected to execute high-performance workloads.
The Network Function operator lets you do the following:
- Poll for existing network devices on a node.
- Query the IP address and physical link state for each network device on a node.
- Provision additional network interfaces on a node.
- Configure low-level system features on the node's physical machine required to support high-performance workloads.
- Use single-root input/output virtualization (SR-IOV) on PCI Express network interfaces to virtualize them into multiple virtual interfaces. You can then configure your Distributed Cloud connected workloads to use those virtual network interfaces.
Distributed Cloud connected support for SR-IOV is based on the following open source projects:
Network Function operator profiles
Distributed Cloud connected provides the following Network Function operator functionality profiles on each Distributed Cloud connected form factor:
Distributed Cloud connected racks support the full Network Function operator functionality profile with the following features:
Network automation functions let you automate the configuration of your workload Pod networking. For example, configuring BGP peering and secondary network interfaces.
State export functions let you export host network states to the user, including network interface configuration and status.
Node configuration functions let you fine-tune a node's performance to fit your business needs, including CPU isolation, huge page, realtime kernel,
kubeletparameters, andsysctl.Power management functions let you manage power consumption on a node, including P-states and C-states of isolated CPUs.
Webhook functions let you validate user inputs.
Miscellaneous functions include the SR-IOV automator that automatically configures the SR-IOV operator.
Distributed Cloud connected servers support the performance-optimized Network Function operator functionality profile with the following features:
Network automation functions let you automate the configuration of your workload Pod networking. For example, configuring BGP peering and secondary network interfaces.
State export functions let you export host network states to the user, including network interface configuration and status.
Webhook functions let you validate user inputs.
Prerequisites
The Network Function operator fetches network configuration from the Distributed Cloud Edge Network API.
To allow this, you must grant the Network Function operator service account the Edge Network Viewer role
(roles/edgenetwork.viewer) using the following command:
gcloud projects add-iam-policy-binding ZONE_PROJECT_ID \ --role roles/edgenetwork.viewer \ --member "serviceAccount:CLUSTER_PROJECT_ID.svc.id.goog[nf-operator/nf-angautomator-sa]"
Replace the following:
ZONE_PROJECT_IDwith the ID of the Google Cloud project that holds the Distributed Cloud Edge Network API resources.CLUSTER_PROJECT_IDwith the ID of the Google Cloud project that holds the target Distributed Cloud connected cluster.
Network Function operator resources
The Distributed Cloud connected Network Function operator implements the following Kubernetes CRDs:
Network. Defines a virtual network that pods can use to communicate with internal and external resources. You must create the corresponding VLAN using the Distributed Cloud Edge Network API before specifying it in this resource. For instructions, see Create a network.NetworkInterfaceState. Enables the discovery of network interface states and querying a network interface for link state and IP address.NodeSystemConfigUpdate. Enables the configuration of low-level system features such as kernel options andKubeletflags.SriovNetworkNodePolicy. Selects a group of SR-IOV virtualized network interfaces and instantiates the group as a Kubernetes resource. You can use this resource in aNetworkAttachmentDefinitionresource.SriovNetworkNodeState. Lets you query the provisioning state of theSriovNetworkNodePolicyresource on a Distributed Cloud node.NetworkAttachmentDefinition. Lets you attach Distributed Cloud pods to one or more logical or physical networks on your Distributed Cloud connected node. You must create the corresponding VLAN using the Distributed Cloud Edge Network API before specifying it in this resource. For instructions, see Create a network.
The Network Function operator also lets you define secondary network interfaces that do not use SR-IOV virtual functions.
Network resource
The Network resource defines a virtual network within the
Distributed Cloud connected rack that pods within your
Distributed Cloud connected cluster can use to communicate with
internal and external resources.
The Network resource provides the following configurable parameters for the
network interface exposed as writable fields:
spec.type: specifies the network transport layer for this network. The only valid value isL2. You must also specify anodeInterfaceMatcher.interfaceNamevalue.spec.nodeInterfaceMatcher.interfaceName: the name of the physical network interface on the target Distributed Cloud connected node to use with this network.spec.gateway4: the IP address of the network gateway for this network.spec.l2NetworkConfig.prefixLength4: specifies the CIDR range for this network.annotations.networking.gke.io/gdce-vlan-id: specifies the VLAN ID for this network.annotations.networking.gke.io/gdce-vlan-mtu: (optional) specifies the MTU value for this network. If omitted, inherits the MTU value from the parent interface.annotations.networking.gke.io/gdce-lb-service-vip-cidr: specifies the virtual IP address range for the load balancing service. The value can be a CIDR block or an explicit address range value. This annotation is mandatory for Layer 3 and optional for Layer 2 load balancing.
The following example illustrates the structure of the resource:
apiVersion: networking.gke.io/v1
kind: Network
metadata:
name: vlan200-network
annotations:
networking.gke.io/gdce-vlan-id: 200
networking.gke.io/gdce-vlan-mtu: 1500
networking.gke.io/gdce-lb-service-vip-cidrs: "10.1.1.0/24"
spec:
type: L2
nodeInterfaceMatcher:
interfaceName: gdcenet0.200
gateway4: 10.53.0.1
To specify multiple virtual IP address ranges for the load balancing service, use
the networking.gke.io/gdce-lb-service-vip-cidrs annotation. You can provide
the values for this annotation as either a comma-separated list or as a JSON payload.
For example:
[
{
"name": "test-oam-3",
"addresses": ["10.235.128.133-10.235.128.133"],
"autoAssign": false
}
,
{
"name": "test-oam-4",
"addresses": ["10.235.128.134-10.235.128.134"],
"autoAssign": false
},
{
"name": "test-oam-5",
"addresses": ["10.235.128.135-10.235.128.135"],
"autoAssign": false
}
]
If you choose to use a JSON payload, we recommend that you use the condensed JSON format. For example:
apiVersion: networking.gke.io/v1
kind: Network
metadata:
annotations:
networking.gke.io/gdce-lb-service-vip-cidrs: '[{"name":"test-oam-3","addresses":["10.235.128.133-10.235.128.133"],"autoAssign":false},{"name":"test-oam-4","addresses":["10.235.128.134-10.235.128.134"],"autoAssign":false},{"name":"test-oam-5","addresses":["10.235.128.135-10.235.128.135"],"autoAssign":false}]'
networking.gke.io/gdce-vlan-id: "81"
name: test-network-vlan81
spec:
IPAMMode: Internal
dnsConfig:
nameservers:
- 8.8.8.8
gateway4: 192.168.81.1
l2NetworkConfig:
prefixLength4: 24
nodeInterfaceMatcher:
interfaceName: gdcenet0.81
type: L2
Keep in mind that the autoAssign field defaults to false if omitted.
NetworkInterfaceState resource
The NetworkInterfaceState resource is a read-only resource that lets you
discover physical network interfaces on the node and collect runtime statistics
on the network traffic flowing through those interfaces.
Distributed Cloud creates a NetworkInterfaceState resource
for each node in a cluster.
The default configuration of Distributed Cloud connected machines
includes a bonded network interface on the Rack Select Network Daughter Card
(rNDC) named gdcenet0. This interface bonds the eno1np0 and eno2np1
network interfaces. Each of those is connected to one
Distributed Cloud ToR switch, respectively.
The NetworkInterfaceState resource provides the following categories of
network interface information exposed as read-only status fields.
General information:
status.interfaces.ifname: the name of the target network interface.status.lastReportTime: the time and date of the last status report for the target interface.
IP address configuration information:
status.interfaces.interfaceinfo.address: the IP address assigned to the target interface.status.interfaces.interfaceinfo.dns: the IP address of the DNS server assigned to the target interface.status.interfaces.interfaceinfo.gateway: the IP address of the network gateway serving the target interface.status.interfaces.interfaceinfo.prefixlen: the length of the IP prefix.
Hardware information:
status.interfaces.linkinfo.broadcast: the broadcast MAC address of the target interface.status.interfaces.linkinfo.businfo: the PCIe device path inbus:slot.functionformat.status.interfaces.linkinfo.flags: the interface flags—for example,BROADCAST.status.interfaces.linkinfo.macAddress: the Unicast MAC address of the target interface.status.interfaces.linkinfo.mtu: the MTU value for the target interface.
Reception statistics:
status.interfaces.statistics.rx.bytes: the total bytes received by the target interface.status.interfaces.statistics.rx.dropped: the total packets dropped by the target interface.status.interfaces.statistics.rx.errors: the total packet receive errors for the target interface.status.interfaces.statistics.rx.multicast: the total multicast packets received by the target interface.status.interfaces.statistics.rx.overErrors: the total packet receive over errors for the target interface.status.interfaces.statistics.rx.packets: the total packets received by the target interface.
Transmission statistics:
status.interfaces.statistics.tx.bytes: the total bytes transmitted by the target interface.status.interfaces.statistics.tx.carrierErrors: the total carrier errors encountered by the target interface.status.interfaces.statistics.tx.collisions: the total packet collisions encountered by the target interface.status.interfaces.statistics.tx.dropped: the total packets dropped by the target interface.status.interfaces.statistics.tx.errors: the total transmission errors for the target interface.status.interfaces.statistics.tx.packets: the total packets transmitted by the target interface.
The following example illustrates the structure of the resource:
apiVersion: networking.gke.io/v1
kind: NetworkInterfaceState
metadata:
name: MyNode1
nodeName: MyNode1
status:
interfaces:
- ifname: eno1np0
linkinfo:
businfo: 0000:1a:00.0
flags: up|broadcast|multicast
macAddress: ba:16:03:9e:9c:87
mtu: 9000
statistics:
rx:
bytes: 1098522811
errors: 2
multicast: 190926
packets: 4988200
tx:
bytes: 62157709961
packets: 169847139
- ifname: eno2np1
linkinfo:
businfo: 0000:1a:00.1
flags: up|broadcast|multicast
macAddress: ba:16:03:9e:9c:87
mtu: 9000
statistics:
rx:
bytes: 33061895405
multicast: 110203
packets: 110447356
tx:
bytes: 2370516278
packets: 11324730
- ifname: enp95s0f0np0
interfaceinfo:
- address: fe80::63f:72ff:fec4:2bf4
prefixlen: 64
linkinfo:
businfo: 0000:5f:00.0
flags: up|broadcast|multicast
macAddress: 04:3f:72:c4:2b:f4
mtu: 9000
statistics:
rx:
bytes: 37858381
multicast: 205645
packets: 205645
tx:
bytes: 1207334
packets: 6542
- ifname: enp95s0f1np1
interfaceinfo:
- address: fe80::63f:72ff:fec4:2bf5
prefixlen: 64
linkinfo:
businfo: 0000:5f:00.1
flags: up|broadcast|multicast
macAddress: 04:3f:72:c4:2b:f5
mtu: 9000
statistics:
rx:
bytes: 37852406
multicast: 205607
packets: 205607
tx:
bytes: 1207872
packets: 6545
- ifname: enp134s0f0np0
interfaceinfo:
- address: fe80::63f:72ff:fec4:2b6c
prefixlen: 64
linkinfo:
businfo: 0000:86:00.0
flags: up|broadcast|multicast
macAddress: 04:3f:72:c4:2b:6c
mtu: 9000
statistics:
rx:
bytes: 37988773
multicast: 205584
packets: 205584
tx:
bytes: 1212385
packets: 6546
- ifname: enp134s0f1np1
interfaceinfo:
- address: fe80::63f:72ff:fec4:2b6d
prefixlen: 64
linkinfo:
businfo: 0000:86:00.1
flags: up|broadcast|multicast
macAddress: 04:3f:72:c4:2b:6d
mtu: 9000
statistics:
rx:
bytes: 37980702
multicast: 205548
packets: 205548
tx:
bytes: 1212297
packets: 6548
- ifname: gdcenet0
interfaceinfo:
- address: 208.117.254.36
prefixlen: 28
- address: fe80::b816:3ff:fe9e:9c87
prefixlen: 64
linkinfo:
flags: up|broadcast|multicast
macAddress: ba:16:03:9e:9c:87
mtu: 9000
statistics:
rx:
bytes: 34160422968
errors: 2
multicast: 301129
packets: 115435591
tx:
bytes: 64528301111
packets: 181171964
.. <remaining interfaces omitted>
lastReportTime: "2022-03-30T07:35:44Z"
NodeSystemConfigUpdate resource
The NodeSystemConfigUpdate resource lets you make changes to the node's
operating system configuration as well as modify Kubelet flags. Changes other
than sysctl changes require a node reboot. This resource is not available on
Distributed Cloud connected servers deployments.
When instantiating this resource, you must specify the target nodes in
the nodeSelector field. You must include all key-value pairs for each
target node in the nodeSelector field. When you specify more than one target
node in this field, the target nodes are updated one node at a time.
CAUTION: The nodeName field has been deprecated. Using it immediately reboots
the target nodes, including local control plane nodes, which can halt critical
workloads.
The NodeSystemConfigUpdate resource provides the following configuration fields
specific to Distributed Cloud connected:
spec.containerRuntimeDNSConfig.ip: specifies a list of IP addresses for private image registries.spec.containerRuntimeDNSConfig: specifies a list of custom DNS entries used by the Container Runtime Environment on each Distributed Cloud connected node. Each entry consists of the following fields:ip: specifies the target IPv4 address,domain: specifies the corresponding domain,interface: specifies the network egress interface through which the IP address specified in theipfield is reachable. You can specify an interface defined through the following resources:CustomNetworkInterfaceConfig,Network(by annotation),NetworkAttachmentDefinition, (by annotation).
spec.kubeletConfig.cpuManagerPolicy: specifies the Kubernetes CPUManager policy. Valid values areNoneandStatic.spec.kubeletConfig.topologyManagerPolicy: specifies the Kubernetes TopologyManager policy. Valid values areNone,BestEffort,Restricted, andSingleNumaMode.spec.osConfig.hugePagesConfig: specifies the huge page configuration per NUMA node. Valid values are2MBand1GB. The number of huge pages requested is evenly distributed across both NUMA nodes in the system. For example, if you allocate 16 huge pages at 1 GB each, then each node receives a pre-allocation of 8 GB.spec.osConfig.isolatedCpusPerSocket: specifies the number of isolated CPUs per socket. Required ifcpuManagerPolicyis set toStatic. The maximum number of isolated CPUs must be fewer than 80% of the total CPUs in the node.spec.osConfig.cpuIsolationPolicy: specifies the CPU isolation policy. TheDefaultpolicy only isolatessystemdtasks from CPUs reserved for workloads. TheKernelpolicy marks the CPUs asisolcpusand sets thercu_nocb,nohz_full, andrcu_nocb_pollflags on each CPU. ThekernelOptimizedpolicy marks the CPUs asisolcpusand sets thercu_nocbandrcu_nocb_pollflags on each CPU, but not thenohz_fullflag.spec.sysctls.NodeLevel: specifies thesysctlsparameters that you can configure globally on a node by using the Network Function operator. The configurable parameters are as follows:fs.inotify.max_user_instancesfs.inotify.max_user_watcheskernel.sched_rt_runtime_uskernel.core_patternnet.ipv4.tcp_wmemnet.ipv4.tcp_rmemnet.ipv4.tcp_slow_start_after_idlenet.ipv4.udp_rmem_minnet.ipv4.udp_wmem_minnet.ipv4.tcp_rmemnet.ipv4.tcp_wmemnet.core.rmem_maxnet.core.wmem_maxnet.core.rmem_defaultnet.core.wmem_defaultnet.netfilter.nf_conntrack_tcp_timeout_unacknowledgednet.netfilter.nf_conntrack_tcp_timeout_max_retransnet.sctp.auth_enablenet.sctp.sctp_memnet.ipv4.udp_memnet.ipv4.tcp_memnet.ipv4.tcp_slow_start_after_idlenet.sctp.auth_enablevm.max_map_count
You can also scope both safe and unsafe
sysctlsparameters to a specific pod or namespace by using thetuningContainer Networking Interface (CNI) plug-in.
The NodeSystemConfigUpdate resource provides the following read-only general
status fields:
status.lastReportTime: the most recent time that status was reported for the target interface.status.conditions.lastTransitionTime: the most recent time that the condition of the interface has changed.status.conditions.observedGeneration: denotes the.metadata.generationvalue on which the initial condition was based.status.conditions.message: an informative message describing the change of the interface's condition.status.conditions.reason: a programmatic identifier denoting the reason for the last change of the interface's condition.status.conditions.status: the status descriptor of the condition. Valid values areTrue,False, andUnknown.status.conditions.type: the condition type in camelCase.
The following example illustrates the structure of the resource:
apiVersion: networking.gke.io/v1
kind: NodeSystemConfigUpdate
metadata:
name: node-pool-1-config
namespace: default
spec:
nodeSelector:
baremetal.cluster.gke.io/node-pool: node-pool-1
networking.gke.io/worker-network-sriov.capable: true
sysctls:
nodeLevel:
"net.ipv4.udp_mem" : "12348035 16464042 24696060"
kubeletConfig:
topologyManagerPolicy: BestEffort
cpuManagerPolicy: Static
osConfig:
hugePagesConfig:
"TWO_MB": 0
"ONE_GB": 16
isolatedCpusPerSocket:
"0": 10
"1": 10
SriovNetworkNodePolicy resource
The SriovNetworkNodePolicy resource lets you allocate a group of SR-IOV
virtual functions (VFs) on a Distributed Cloud connected physical
machine and instantiate that group as a Kubernetes resource. You can then use
this resource in a NetworkAttachmentDefinition resource. This resource is not
available on Distributed Cloud connected servers deployments
You can select each target VF by its PCIe vendor and device ID, its PCIe device addresses, or by its Linux enumerated device name. The SR-IOV Network Operator configures each physical network interface to provision the target VFs. This includes updating the network interface firmware, configuring the Linux kernel driver, and rebooting the Distributed Cloud connected machine, if necessary.
To discover the network interfaces available on your node, you can look up the
NetworkInterfaceState resources
on that node in the nf-operator namespace.
The following example illustrates the structure of the resource:
apiVersion: sriovnetwork.k8s.cni.cncf.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: mlnx6-p2-sriov-en2
namespace: sriov-network-operator
spec:
deviceType: netdevice
isRdma: true
mtu: 9000
nicSelector:
pfNames:
- enp134s0f1np1
nodeSelector:
edgecontainer.googleapis.com/network-sriov.capable: "true"
numVfs: 31
priority: 99
resourceName: mlnx6_p2_sriov_en2
The preceding example creates a maximum of 31 VFs from the second port on the
network interface named enp134s0f1np1 with an MTU value of 9000 (the maximum
allowed value). Use the node selector label
edgecontainer.googleapis.com/network-sriov.capable, which is present on all
Distributed Cloud connected nodes capable of SR-IOV.
For information about using this resource, see
SriovNetworkNodeState.
SriovNetworkNodeState resource
The SriovNetworkNodeState read-only resource lets you query the provisioning
state of the SriovNetworkNodePolicy resource on a
Distributed Cloud connected node. It returns the complete
configuration of the SriovNetworkNodePolicy resource on the node
as well as a list of active VFs on the node. The status.syncStatus field
indicates whether all SriovNetworkNodePolicy resources defined for the node
have been properly applied. This resource is not available on
Distributed Cloud connected servers deployments
The following example illustrates the structure of the resource:
apiVersion: sriovnetwork.k8s.cni.cncf.io/v1
kind: SriovNetworkNodeState
metadata:
name: MyNode1
namespace: sriov-network-operator
spec:
dpConfigVersion: "1969684"
interfaces:
- mtu: 9000
name: enp134s0f1np1
numVfs: 31
pciAddress: 0000:86:00.1
vfGroups:
- deviceType: netdevice
mtu: 9000
policyName: mlnx6-p2-sriov-en2
resourceName: mlnx6_p2_sriov_en2
vfRange: 0-30
status:
Status:
Interfaces:
Device ID: 1015
Driver: mlx5_core
Link Speed: 25000 Mb/s
Link Type: ETH
Mac: ba:16:03:9e:9c:87
Mtu: 9000
Name: eno1np0
Pci Address: 0000:1a:00.0
Vendor: 15b3
Device ID: 1015
Driver: mlx5_core
Link Speed: 25000 Mb/s
Link Type: ETH
Mac: ba:16:03:9e:9c:87
Mtu: 9000
Name: eno2np1
Pci Address: 0000:1a:00.1
Vendor: 15b3
Vfs:
- Vfs:
- deviceID: 101e
driver: mlx5_core
mac: c2:80:29:b5:63:55
mtu: 9000
name: enp134s0f1v0
pciAddress: 0000:86:04.1
vendor: 15b3
vfID: 0
- deviceID: 101e
driver: mlx5_core
mac: 7e:36:0c:82:d4:20
mtu: 9000
name: enp134s0f1v1
pciAddress: 0000:86:04.2
vendor: 15b3
vfID: 1
.. <omitted 29 other VFs here>
syncStatus: Succeeded
For information about using this resource, see
SriovNetworkNodeState.
NetworkAttachmentDefinition resource
The NetworkAttachmentDefinition resource lets you attach
Distributed Cloud pods to one or more logical or physical
networks on your Distributed Cloud connected node. It leverages
the Multus-CNI framework
and the following plugins:
Use an annotation to reference the name of the appropriate
SriovNetworkNodePolicy resource. When you create this annotation, do the
following:
- Use the key
k8s.v1.cni.cncf.io/resourceName. - Use the prefix
gke.io/in its value, followed by the name of the targetSriovNetworkNodePolicyresource.
Use the networking.gke.io/gdce-vlan-id annotation to specify the VLAN ID for the
target network. This annotation is mandatory.
The following examples illustrate the structure of the resource. For IPv4 networking.
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: sriov-net1
namespace: mynamespace
annotations:
k8s.v1.cni.cncf.io/resourceName: gke.io/mlnx6_p2_sriov_en2
networking.gke.io/gdce-vlan-id: 225
spec:
config: '{
"type": "sriov",
"cniVersion": "0.3.1",
"name": "sriov-network",
"ipam": {
"type": "host-local",
"subnet": "10.56.217.0/24",
"routes": [{
"dst": "0.0.0.0/0"
}],
"gateway": "10.56.217.1"
}
}'
For IPv6 networking:
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: sriov-210-den102
annotations:
k8s.v1.cni.cncf.io/resourceName: gke.io/mlnx6_p0_sriov_en
networking.gke.io/gdce-vlan-id: 225
spec:
config: '{
"type": "sriov",
"cniVersion": "0.3.1",
"name": "sriov-210-den102",
"vlan": 210,
"ipam": {
"type": "host-local",
"rangeStart": "2001:4860:1025:102:ffff:0220::2",
"rangeEnd": "2001:4860:1025:102:ffff:0220::F",
"subnet": "2001:4860:1025:102:ffff:0220::/96",
"routes": [{
"dst": "::/0"
}],
"gateway": "2001:4860:1025:102:ffff:0220::1"
}
}'
Configure a secondary interface on a pod using SR-IOV VFs
After you configure a SriovNetworkNodePolicy resource and a corresponding
NetworkAttachmentDefinition resource, you can configure a secondary network
interface on a Distributed Cloud pod by using SR-IOV virtual
functions.
To do so, add an annotation to your Distributed Cloud pod definition as follows:
- Key:
k8s.v1.cni.cncf.io/networks - Value:
nameSpace/<NetworkAttachmentDefinition1,nameSpace/NetworkAttachmentDefinition2...
The following example illustrates this annotation:
apiVersion: v1
kind: pod
metadata:
name: sriovpod
annotations:
k8s.v1.cni.cncf.io/networks: mynamespace/sriov-net1
spec:
containers:
- name: sleeppodsriov
command: ["sh", "-c", "trap : TERM INT; sleep infinity & wait"]
image: alpine
securityContext:
capabilities:
add:
- NET_ADMIN
Configure a secondary interface on a pod using the MacVLAN driver
Distributed Cloud connected also supports creating a secondary network
interface on a pod by using the MacVLAN driver. Only the gdcenet0 interface
supports this configuration and only on pods that run containerized workloads.
To configure an interface to use the MacVLAN driver:
Configure a
NetworkAttachmentDefinitionresource as shown in the following examples. For IPv4 networking:apiVersion: "k8s.cni.cncf.io/v1" kind: NetworkAttachmentDefinition metadata: name: macvlan-b400-1 annotations: networking.gke.io/gdce-vlan-id: 400 spec: config: '{ "type": "macvlan", "master": "gdcenet0.400", "ipam": { "type": "static", "addresses": [ { "address": "192.168.100.20/27", "gateway": "192.168.100.1" } ] ... } }'For IPv6 networking:
apiVersion: "k8s.cni.cncf.io/v1" kind: NetworkAttachmentDefinition metadata: name: macvlan-bond0-210-den402 annotations: networking.gke.io/gdce-vlan-id spec: config: '{ "type": "macvlan", "cniVersion": "0.3.1", "name": "bond0-210", "master": "bond0.210", "ipam": { "type": "host-local", "rangeStart": "2001:4860:1025:102:0001:0210::2", "rangeEnd": "2001:4860:1025:102:0001:0210::F", "subnet": "2001:4860:1025:102:0001:0210::/96", "routes": [{ "dst": "::/0" }], "gateway": "2001:4860:1025:102:0001:0210::1" } }'Add an annotation to your Distributed Cloud pod definition as follows. For IPv4 networking:
apiVersion: v1 kind: pod metadata: name: macvlan-testpod1 annotations: k8s.v1.cni.cncf.io/networks: macvlan-b400-1For IPv6 networking:
apiVersion: v1 kind: Pod metadata: name: vlan210-1 namespace: default annotations: k8s.v1.cni.cncf.io/networks: default/macvlan-bond0-210-den402
Configure a secondary interface on a pod using Distributed Cloud multi-networking
Distributed Cloud connected supports creating a secondary network interface on a pod by using its multi-network feature. To do so, complete the following steps:
Configure a
Networkresource. For example:apiVersion: networking.gke.io/v1 kind: Network metadata: name: my-network-410 annotations: networking.gke.io/gdce-vlan-id: "410" networking.gke.io/gdce-lb-service-vip-cidrs: '[{"name":"myPool","addresses":["10.100.63.130-10.100.63.135"],"avoidBuggyIPs":false,"autoAssign":true}]' spec: type: L2 nodeInterfaceMatcher: interfaceName: gdcenet0.410 gateway4: 10.100.63.129 l2NetworkConfig: prefixLength4: 27The
networking.gke.io/gdce-lb-service-vip-cidrsannotation specifies one or more IP address pools for this virtual network. The first half of the CIDR you specify here must include Service Virtual IP (SVIP) addresses. Distributed Cloud connected enforces this requirement through webhook checks as follows:- The SVIP address range must be within the corresponding VLAN CIDR range, and
- The SVIP address range can only span up to the first half of the VLAN CIDR range.
Add an annotation to your Distributed Cloud pod definition as follows:
apiVersion: v1 kind: pod metadata: name: myPod annotations: networking.gke.io/interfaces: '[{"interfaceName":"eth0","network":"pod-network"}, {"interfaceName":"eth1","network":"my-network-410"}]' networking.gke.io/default-interface: eth1This annotation configures the
eth0interface as primary and theeth1interface as secondary with Layer2 load balancing with MetalLB.
Configuring your secondary interface as described in this section results in the automatic creation of the following custom resources:
- An
IPAddressPoolresource, which enables automatic SVIP address assignment to Pods. For example:
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
name: test-410-pool
namespace: kube-system
annotations:
networking.gke.io/network:my-network-410
…
spec:
addresses:
- 10.100.63.130-10.100.63.135
autoAssign: true
- An
L2Advertisementresource, which enables advertising of the specified SVIP addresses. For example:
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
name: l2advertise-410
namespace: kube-system
spec:
ipAddressPools:
- test-410-pool
interfaces:
- gdcenet0.410
## What's next