Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Deep Learning VM Image adalah kumpulan image virtual machine yang dioptimalkan untuk tugas data science dan machine learning. Semua image dilengkapi dengan framework ML utama dan alat yang telah diinstal sebelumnya. Anda dapat langsung menggunakannya pada instance yang memiliki GPU untuk mempercepat tugas pemrosesan data.
Deep Learning VM Image tersedia untuk mendukung banyak kombinasi framework dan prosesor. Saat ini, tersedia image yang mendukung TensorFlow Enterprise, TensorFlow, PyTorch, dan komputasi berperforma tinggi generik, dengan versi baik untuk alur kerja khusus CPU maupun alur kerja GPU yang diaktifkan.
Untuk melihat daftar framework yang tersedia, lihat Memilih image.
Paket yang telah terpasang sebelumnya
Image didasarkan pada sistem operasi Debian 11 dan Ubuntu 22.04, dan image ini dapat dikonfigurasi untuk menyertakan hal berikut:
Framework tertentu (misalnya, TensorFlow) dan
paket pendukung.
Python 3.10 dengan paket berikut:
numpy
scipy
matplotlib
pandas
nltk
bantal
scikit-image
opencv-python
scikit-learn
banyak lagi
Lingkungan notebook JupyterLab untuk pembuatan prototipe cepat
Paket Nvidia dengan driver Nvidia terbaru untuk instance berkemampuan GPU:
CUDA 11.x dan 12.x (versi bergantung pada framework)
CuDNN 7.x dan NCCL 2.x (versi bergantung pada versi CUDA)
Update
Deep Learning VM Image diupdate secara berkala dengan perbaikan bug dan update paket. Lihat catatan rilis
untuk mengetahui informasi tentang update.
Dukungan komunitas
Ajukan pertanyaan tentang Deep Learning VM di Stack
Overflow
atau bergabung dengan grup Google google-dl-platform untuk membahas Deep Learning VM.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-09-04 UTC."],[[["\u003cp\u003eDeep Learning VM Images are pre-configured virtual machines optimized for data science and machine learning, with key ML frameworks and tools already installed.\u003c/p\u003e\n"],["\u003cp\u003eThese images support various framework and processor combinations, including TensorFlow, TensorFlow Enterprise, PyTorch, and high-performance computing, with options for CPU-only and GPU-enabled workflows.\u003c/p\u003e\n"],["\u003cp\u003eThe images include pre-installed packages like Python 3.10, popular data science libraries, and JupyterLab environments, and Nvidia drivers for GPU acceleration.\u003c/p\u003e\n"],["\u003cp\u003eDeep Learning VM Images are based on Debian 11 or Ubuntu 22.04 and are regularly updated with bug fixes and package updates.\u003c/p\u003e\n"],["\u003cp\u003eCommunity support for Deep Learning VM is available through Stack Overflow and the google-dl-platform Google group.\u003c/p\u003e\n"]]],[],null,["# Introduction to Deep Learning VM\n\nDeep Learning VM Images is a set of\nvirtual machine images optimized for data science and machine\nlearning tasks. All images come with key ML frameworks and tools\npre-installed. You can use them out of the box on instances with\nGPUs to accelerate your data processing tasks.\n\nDeep Learning VM images are available to support many combinations\nof framework and processor. There are currently images supporting\n[TensorFlow Enterprise](/tensorflow-enterprise/docs),\nTensorFlow, PyTorch, and generic high-performance computing,\nwith versions for both CPU-only and GPU-enabled workflows.\n\nTo see a list of frameworks available, see [Choosing an\nimage](/deep-learning-vm/docs/images).\n\nPre-installed packages\n----------------------\n\nImages are based on the Debian 11 and Ubuntu 22.04\noperating systems, and these images can be\nconfigured to include the following:\n\n- Specific frameworks (for example, TensorFlow) and\n supporting packages.\n\n- Python 3.10 with the following packages:\n\n - numpy\n - scipy\n - matplotlib\n - pandas\n - nltk\n - pillow\n - scikit-image\n - opencv-python\n - scikit-learn\n - many more\n- JupyterLab notebook environments for quick prototyping\n\n- Nvidia packages with the latest Nvidia driver for GPU-enabled instances:\n\n - CUDA 11.*x* and 12.*x* (the version depends on the framework)\n - CuDNN 7.*x* and NCCL 2.*x* (the version depends on the CUDA version)\n\nUpdates\n-------\n\nDeep Learning VM images are updated regularly with bug fixes\nand package updates. Check the [release notes](/deep-learning-vm/docs/release-notes)\nfor information about updates.\n\nCommunity support\n-----------------\n\nAsk a question about Deep Learning VM on [Stack\nOverflow](https://stackoverflow.com/questions/tagged/google-dl-platform)\nor join the\n[google-dl-platform](https://groups.google.com/forum/#!forum/google-dl-platform)\nGoogle group to discuss Deep Learning VM.\n\n[Learn more about getting support from the\ncommunity](/deep-learning-vm/docs/getting-support#get_support_from_the_community).\n\nWhat's next\n-----------\n\nTo get started using Deep Learning VM, create a new instance\n[using the Cloud Marketplace](/deep-learning-vm/docs/cloud-marketplace)\nor [using the command line](/deep-learning-vm/docs/cli)."]]