更新集群
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
此示例引导用户使用 Python 客户端库更新 Cloud Dataproc 集群。
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis sample demonstrates how to update a Cloud Dataproc cluster using the Python client library.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves creating a client with the specified cluster region, retrieving the cluster to update, and then updating the desired parameters such as the number of instances.\u003c/p\u003e\n"],["\u003cp\u003eThe sample utilizes the \u003ccode\u003edataproc.ClusterControllerClient\u003c/code\u003e to manage cluster operations and the \u003ccode\u003eupdate_cluster\u003c/code\u003e function to apply changes.\u003c/p\u003e\n"],["\u003cp\u003eAuthentication to Dataproc is required, utilizing Application Default Credentials.\u003c/p\u003e\n"],["\u003cp\u003eYou can find more samples for other Google Cloud products using the Google Cloud sample browser.\u003c/p\u003e\n"]]],[],null,["This sample walks a user through updating a Cloud Dataproc cluster using the Python client library.\n\nCode sample \n\nPython\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Dataproc quickstart using\nclient libraries](/dataproc/docs/quickstarts/quickstart-lib).\n\n\nFor more information, see the\n[Dataproc Python API\nreference documentation](/python/docs/reference/dataproc/latest).\n\n\nTo authenticate to Dataproc, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google.cloud import dataproc_v1 as dataproc\n\n\n def update_cluster(project_id, region, cluster_name, new_num_instances):\n \"\"\"This sample walks a user through updating a Cloud Dataproc cluster\n using the Python client library.\n\n Args:\n project_id (str): Project to use for creating resources.\n region (str): Region where the resources should live.\n cluster_name (str): Name to use for creating a cluster.\n \"\"\"\n\n # Create a client with the endpoint set to the desired cluster region.\n client = dataproc.ClusterControllerClient(\n client_options={\"api_endpoint\": f\"{region}-dataproc.googleapis.com:443\"}\n )\n\n # Get cluster you wish to update.\n cluster = client.get_cluster(\n project_id=project_id, region=region, cluster_name=cluster_name\n )\n\n # Update number of clusters\n mask = {\"paths\": {\"config.worker_config.num_instances\": str(new_num_instances)}}\n\n # Update cluster config\n cluster.config.worker_config.num_instances = new_num_instances\n\n # Update cluster\n operation = client.update_cluster(\n project_id=project_id,\n region=region,\n cluster=cluster,\n cluster_name=cluster_name,\n update_mask=mask,\n )\n\n # Output a success message.\n updated_cluster = operation.result()\n print(f\"Cluster was updated successfully: {updated_cluster.cluster_name}\")\n\nWhat's next\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=dataproc)."]]