Atualizar um cluster

Este exemplo orienta o usuário na atualização de um cluster do Cloud Dataproc usando a biblioteca de cliente Python.

Exemplo de código

Python

Antes de testar este exemplo, siga as instruções de configuração do Python no Guia de início rápido do Dataproc: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python do Dataproc.

Para autenticar no Dataproc, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google.cloud import dataproc_v1 as dataproc


def update_cluster(project_id, region, cluster_name, new_num_instances):
    """This sample walks a user through updating a Cloud Dataproc cluster
    using the Python client library.

    Args:
        project_id (str): Project to use for creating resources.
        region (str): Region where the resources should live.
        cluster_name (str): Name to use for creating a cluster.
    """

    # Create a client with the endpoint set to the desired cluster region.
    client = dataproc.ClusterControllerClient(
        client_options={"api_endpoint": f"{region}-dataproc.googleapis.com:443"}
    )

    # Get cluster you wish to update.
    cluster = client.get_cluster(
        project_id=project_id, region=region, cluster_name=cluster_name
    )

    # Update number of clusters
    mask = {"paths": {"config.worker_config.num_instances": str(new_num_instances)}}

    # Update cluster config
    cluster.config.worker_config.num_instances = new_num_instances

    # Update cluster
    operation = client.update_cluster(
        project_id=project_id,
        region=region,
        cluster=cluster,
        cluster_name=cluster_name,
        update_mask=mask,
    )

    # Output a success message.
    updated_cluster = operation.result()
    print(f"Cluster was updated successfully: {updated_cluster.cluster_name}")

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.