实例化内联工作流模板
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
使用 Cloud 客户端库实例化内嵌工作流模板。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis page demonstrates how to instantiate an inline workflow template using Cloud Client Libraries for Dataproc.\u003c/p\u003e\n"],["\u003cp\u003eThe code samples provided use Go, Java, Node.js, and Python, showcasing the process of creating a workflow with Hadoop jobs (teragen and terasort) and cluster placement configurations.\u003c/p\u003e\n"],["\u003cp\u003eEach code example requires setting up Application Default Credentials for authentication and following the language-specific quickstart guides for Dataproc.\u003c/p\u003e\n"],["\u003cp\u003eThe workflow involves creating jobs, defining cluster placement, and then submitting a request to instantiate the workflow from the inline template, which will run within a managed cluster.\u003c/p\u003e\n"],["\u003cp\u003eThe provided code defines a workflow consisting of two Hadoop jobs, "teragen" and "terasort," and includes the ability to specify a cluster zone or utilize auto zone placement.\u003c/p\u003e\n"]]],[],null,[]]