Instancie o modelo de fluxo de trabalho inline

Instancia um modelo de fluxo de trabalho inline através das bibliotecas cliente da Google Cloud.

Explore mais

Para ver documentação detalhada que inclui este exemplo de código, consulte o seguinte:

Exemplo de código

Go

Antes de experimentar este exemplo, siga as Goinstruções de configuração no início rápido do Dataproc com as bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Go Dataproc.

Para se autenticar no Dataproc, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	dataproc "cloud.google.com/go/dataproc/apiv1"
	"cloud.google.com/go/dataproc/apiv1/dataprocpb"
	"google.golang.org/api/option"
)

func instantiateInlineWorkflowTemplate(w io.Writer, projectID, region string) error {
	// projectID := "your-project-id"
	// region := "us-central1"

	ctx := context.Background()

	// Create the cluster client.
	endpoint := region + "-dataproc.googleapis.com:443"
	workflowTemplateClient, err := dataproc.NewWorkflowTemplateClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		return fmt.Errorf("dataproc.NewWorkflowTemplateClient: %w", err)
	}
	defer workflowTemplateClient.Close()

	// Create jobs for the workflow.
	teragenJob := &dataprocpb.OrderedJob{
		JobType: &dataprocpb.OrderedJob_HadoopJob{
			HadoopJob: &dataprocpb.HadoopJob{
				Driver: &dataprocpb.HadoopJob_MainJarFileUri{
					MainJarFileUri: "file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar",
				},
				Args: []string{
					"teragen",
					"1000",
					"hdfs:///gen/",
				},
			},
		},
		StepId: "teragen",
	}

	terasortJob := &dataprocpb.OrderedJob{
		JobType: &dataprocpb.OrderedJob_HadoopJob{
			HadoopJob: &dataprocpb.HadoopJob{
				Driver: &dataprocpb.HadoopJob_MainJarFileUri{
					MainJarFileUri: "file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar",
				},
				Args: []string{
					"terasort",
					"hdfs:///gen/",
					"hdfs:///sort/",
				},
			},
		},
		StepId: "terasort",
		PrerequisiteStepIds: []string{
			"teragen",
		},
	}

	// Create the cluster placement.
	clusterPlacement := &dataprocpb.WorkflowTemplatePlacement{
		Placement: &dataprocpb.WorkflowTemplatePlacement_ManagedCluster{
			ManagedCluster: &dataprocpb.ManagedCluster{
				ClusterName: "my-managed-cluster",
				Config: &dataprocpb.ClusterConfig{
					GceClusterConfig: &dataprocpb.GceClusterConfig{
						// Leave "ZoneUri" empty for "Auto Zone Placement"
						// ZoneUri: ""
						ZoneUri: "us-central1-a",
					},
				},
			},
		},
	}

	// Create the Instantiate Inline Workflow Template Request.
	req := &dataprocpb.InstantiateInlineWorkflowTemplateRequest{
		Parent: fmt.Sprintf("projects/%s/regions/%s", projectID, region),
		Template: &dataprocpb.WorkflowTemplate{
			Jobs: []*dataprocpb.OrderedJob{
				teragenJob,
				terasortJob,
			},
			Placement: clusterPlacement,
		},
	}

	// Create the cluster.
	op, err := workflowTemplateClient.InstantiateInlineWorkflowTemplate(ctx, req)
	if err != nil {
		return fmt.Errorf("InstantiateInlineWorkflowTemplate: %w", err)
	}

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("InstantiateInlineWorkflowTemplate.Wait: %w", err)
	}

	// Output a success message.
	fmt.Fprintf(w, "Workflow created successfully.")
	return nil
}

Java

Antes de experimentar este exemplo, siga as Javainstruções de configuração no início rápido do Dataproc com as bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Java Dataproc.

Para se autenticar no Dataproc, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.dataproc.v1.ClusterConfig;
import com.google.cloud.dataproc.v1.GceClusterConfig;
import com.google.cloud.dataproc.v1.HadoopJob;
import com.google.cloud.dataproc.v1.ManagedCluster;
import com.google.cloud.dataproc.v1.OrderedJob;
import com.google.cloud.dataproc.v1.RegionName;
import com.google.cloud.dataproc.v1.WorkflowMetadata;
import com.google.cloud.dataproc.v1.WorkflowTemplate;
import com.google.cloud.dataproc.v1.WorkflowTemplatePlacement;
import com.google.cloud.dataproc.v1.WorkflowTemplateServiceClient;
import com.google.cloud.dataproc.v1.WorkflowTemplateServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

public class InstantiateInlineWorkflowTemplate {

  public static void instantiateInlineWorkflowTemplate() throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String region = "your-project-region";
    instantiateInlineWorkflowTemplate(projectId, region);
  }

  public static void instantiateInlineWorkflowTemplate(String projectId, String region)
      throws IOException, InterruptedException {
    String myEndpoint = String.format("%s-dataproc.googleapis.com:443", region);

    // Configure the settings for the workflow template service client.
    WorkflowTemplateServiceSettings workflowTemplateServiceSettings =
        WorkflowTemplateServiceSettings.newBuilder().setEndpoint(myEndpoint).build();

    // Create a workflow template service client with the configured settings. The client only
    // needs to be created once and can be reused for multiple requests. Using a try-with-resources
    // closes the client, but this can also be done manually with the .close() method.
    try (WorkflowTemplateServiceClient workflowTemplateServiceClient =
        WorkflowTemplateServiceClient.create(workflowTemplateServiceSettings)) {

      // Configure the jobs within the workflow.
      HadoopJob teragenHadoopJob =
          HadoopJob.newBuilder()
              .setMainJarFileUri("file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar")
              .addArgs("teragen")
              .addArgs("1000")
              .addArgs("hdfs:///gen/")
              .build();
      OrderedJob teragen =
          OrderedJob.newBuilder().setHadoopJob(teragenHadoopJob).setStepId("teragen").build();

      HadoopJob terasortHadoopJob =
          HadoopJob.newBuilder()
              .setMainJarFileUri("file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar")
              .addArgs("terasort")
              .addArgs("hdfs:///gen/")
              .addArgs("hdfs:///sort/")
              .build();
      OrderedJob terasort =
          OrderedJob.newBuilder()
              .setHadoopJob(terasortHadoopJob)
              .addPrerequisiteStepIds("teragen")
              .setStepId("terasort")
              .build();

      // Configure the cluster placement for the workflow.
      // Leave "ZoneUri" empty for "Auto Zone Placement".
      // GceClusterConfig gceClusterConfig =
      //     GceClusterConfig.newBuilder().setZoneUri("").build();
      GceClusterConfig gceClusterConfig =
          GceClusterConfig.newBuilder().setZoneUri("us-central1-a").build();
      ClusterConfig clusterConfig =
          ClusterConfig.newBuilder().setGceClusterConfig(gceClusterConfig).build();
      ManagedCluster managedCluster =
          ManagedCluster.newBuilder()
              .setClusterName("my-managed-cluster")
              .setConfig(clusterConfig)
              .build();
      WorkflowTemplatePlacement workflowTemplatePlacement =
          WorkflowTemplatePlacement.newBuilder().setManagedCluster(managedCluster).build();

      // Create the inline workflow template.
      WorkflowTemplate workflowTemplate =
          WorkflowTemplate.newBuilder()
              .addJobs(teragen)
              .addJobs(terasort)
              .setPlacement(workflowTemplatePlacement)
              .build();

      // Submit the instantiated inline workflow template request.
      String parent = RegionName.format(projectId, region);
      OperationFuture<Empty, WorkflowMetadata> instantiateInlineWorkflowTemplateAsync =
          workflowTemplateServiceClient.instantiateInlineWorkflowTemplateAsync(
              parent, workflowTemplate);
      instantiateInlineWorkflowTemplateAsync.get();

      // Print out a success message.
      System.out.printf("Workflow ran successfully.");

    } catch (ExecutionException e) {
      System.err.println(String.format("Error running workflow: %s ", e.getMessage()));
    }
  }
}

Node.js

Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do Dataproc com as bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Node.js Dataproc.

Para se autenticar no Dataproc, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

const dataproc = require('@google-cloud/dataproc');

// TODO(developer): Uncomment and set the following variables
// projectId = 'YOUR_PROJECT_ID'
// region = 'YOUR_REGION'

// Create a client with the endpoint set to the desired region
const client = new dataproc.v1.WorkflowTemplateServiceClient({
  apiEndpoint: `${region}-dataproc.googleapis.com`,
  projectId: projectId,
});

async function instantiateInlineWorkflowTemplate() {
  // Create the formatted parent.
  const parent = client.regionPath(projectId, region);

  // Create the template
  const template = {
    jobs: [
      {
        hadoopJob: {
          mainJarFileUri:
            'file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar',
          args: ['teragen', '1000', 'hdfs:///gen/'],
        },
        stepId: 'teragen',
      },
      {
        hadoopJob: {
          mainJarFileUri:
            'file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar',
          args: ['terasort', 'hdfs:///gen/', 'hdfs:///sort/'],
        },
        stepId: 'terasort',
        prerequisiteStepIds: ['teragen'],
      },
    ],
    placement: {
      managedCluster: {
        clusterName: 'my-managed-cluster',
        config: {
          gceClusterConfig: {
            // Leave 'zoneUri' empty for 'Auto Zone Placement'
            // zoneUri: ''
            zoneUri: 'us-central1-a',
          },
        },
      },
    },
  };

  const request = {
    parent: parent,
    template: template,
  };

  // Submit the request to instantiate the workflow from an inline template.
  const [operation] = await client.instantiateInlineWorkflowTemplate(request);
  await operation.promise();

  // Output a success message
  console.log('Workflow ran successfully.');

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Dataproc com as bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Dataproc.

Para se autenticar no Dataproc, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from google.cloud import dataproc_v1 as dataproc


def instantiate_inline_workflow_template(project_id, region):
    """This sample walks a user through submitting a workflow
    for a Cloud Dataproc using the Python client library.

    Args:
        project_id (string): Project to use for running the workflow.
        region (string): Region where the workflow resources should live.
    """

    # Create a client with the endpoint set to the desired region.
    workflow_template_client = dataproc.WorkflowTemplateServiceClient(
        client_options={"api_endpoint": f"{region}-dataproc.googleapis.com:443"}
    )

    parent = f"projects/{project_id}/regions/{region}"

    template = {
        "jobs": [
            {
                "hadoop_job": {
                    "main_jar_file_uri": "file:///usr/lib/hadoop-mapreduce/"
                    "hadoop-mapreduce-examples.jar",
                    "args": ["teragen", "1000", "hdfs:///gen/"],
                },
                "step_id": "teragen",
            },
            {
                "hadoop_job": {
                    "main_jar_file_uri": "file:///usr/lib/hadoop-mapreduce/"
                    "hadoop-mapreduce-examples.jar",
                    "args": ["terasort", "hdfs:///gen/", "hdfs:///sort/"],
                },
                "step_id": "terasort",
                "prerequisite_step_ids": ["teragen"],
            },
        ],
        "placement": {
            "managed_cluster": {
                "cluster_name": "my-managed-cluster",
                "config": {
                    "gce_cluster_config": {
                        # Leave 'zone_uri' empty for 'Auto Zone Placement'
                        # 'zone_uri': ''
                        "zone_uri": "us-central1-a"
                    }
                },
            }
        },
    }

    # Submit the request to instantiate the workflow from an inline template.
    operation = workflow_template_client.instantiate_inline_workflow_template(
        request={"parent": parent, "template": template}
    )
    operation.result()

    # Output a success message.
    print("Workflow ran successfully.")

O que se segue?

Para pesquisar e filtrar exemplos de código para outros Google Cloud produtos, consulte o Google Cloud navegador de exemplos.