Creazione dell'istanza di un modello di flusso di lavoro incorporato

Crea un'istanza per un modello di flusso di lavoro in linea utilizzando le librerie client di Cloud.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nel Guida rapida di Dataproc con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Go.

Per eseguire l'autenticazione su Dataproc, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"

	dataproc "cloud.google.com/go/dataproc/apiv1"
	"cloud.google.com/go/dataproc/apiv1/dataprocpb"
	"google.golang.org/api/option"
)

func instantiateInlineWorkflowTemplate(w io.Writer, projectID, region string) error {
	// projectID := "your-project-id"
	// region := "us-central1"

	ctx := context.Background()

	// Create the cluster client.
	endpoint := region + "-dataproc.googleapis.com:443"
	workflowTemplateClient, err := dataproc.NewWorkflowTemplateClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		return fmt.Errorf("dataproc.NewWorkflowTemplateClient: %w", err)
	}
	defer workflowTemplateClient.Close()

	// Create jobs for the workflow.
	teragenJob := &dataprocpb.OrderedJob{
		JobType: &dataprocpb.OrderedJob_HadoopJob{
			HadoopJob: &dataprocpb.HadoopJob{
				Driver: &dataprocpb.HadoopJob_MainJarFileUri{
					MainJarFileUri: "file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar",
				},
				Args: []string{
					"teragen",
					"1000",
					"hdfs:///gen/",
				},
			},
		},
		StepId: "teragen",
	}

	terasortJob := &dataprocpb.OrderedJob{
		JobType: &dataprocpb.OrderedJob_HadoopJob{
			HadoopJob: &dataprocpb.HadoopJob{
				Driver: &dataprocpb.HadoopJob_MainJarFileUri{
					MainJarFileUri: "file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar",
				},
				Args: []string{
					"terasort",
					"hdfs:///gen/",
					"hdfs:///sort/",
				},
			},
		},
		StepId: "terasort",
		PrerequisiteStepIds: []string{
			"teragen",
		},
	}

	// Create the cluster placement.
	clusterPlacement := &dataprocpb.WorkflowTemplatePlacement{
		Placement: &dataprocpb.WorkflowTemplatePlacement_ManagedCluster{
			ManagedCluster: &dataprocpb.ManagedCluster{
				ClusterName: "my-managed-cluster",
				Config: &dataprocpb.ClusterConfig{
					GceClusterConfig: &dataprocpb.GceClusterConfig{
						// Leave "ZoneUri" empty for "Auto Zone Placement"
						// ZoneUri: ""
						ZoneUri: "us-central1-a",
					},
				},
			},
		},
	}

	// Create the Instantiate Inline Workflow Template Request.
	req := &dataprocpb.InstantiateInlineWorkflowTemplateRequest{
		Parent: fmt.Sprintf("projects/%s/regions/%s", projectID, region),
		Template: &dataprocpb.WorkflowTemplate{
			Jobs: []*dataprocpb.OrderedJob{
				teragenJob,
				terasortJob,
			},
			Placement: clusterPlacement,
		},
	}

	// Create the cluster.
	op, err := workflowTemplateClient.InstantiateInlineWorkflowTemplate(ctx, req)
	if err != nil {
		return fmt.Errorf("InstantiateInlineWorkflowTemplate: %w", err)
	}

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("InstantiateInlineWorkflowTemplate.Wait: %w", err)
	}

	// Output a success message.
	fmt.Fprintf(w, "Workflow created successfully.")
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Dataproc con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Java.

Per eseguire l'autenticazione su Dataproc, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.dataproc.v1.ClusterConfig;
import com.google.cloud.dataproc.v1.GceClusterConfig;
import com.google.cloud.dataproc.v1.HadoopJob;
import com.google.cloud.dataproc.v1.ManagedCluster;
import com.google.cloud.dataproc.v1.OrderedJob;
import com.google.cloud.dataproc.v1.RegionName;
import com.google.cloud.dataproc.v1.WorkflowMetadata;
import com.google.cloud.dataproc.v1.WorkflowTemplate;
import com.google.cloud.dataproc.v1.WorkflowTemplatePlacement;
import com.google.cloud.dataproc.v1.WorkflowTemplateServiceClient;
import com.google.cloud.dataproc.v1.WorkflowTemplateServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

public class InstantiateInlineWorkflowTemplate {

  public static void instantiateInlineWorkflowTemplate() throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String region = "your-project-region";
    instantiateInlineWorkflowTemplate(projectId, region);
  }

  public static void instantiateInlineWorkflowTemplate(String projectId, String region)
      throws IOException, InterruptedException {
    String myEndpoint = String.format("%s-dataproc.googleapis.com:443", region);

    // Configure the settings for the workflow template service client.
    WorkflowTemplateServiceSettings workflowTemplateServiceSettings =
        WorkflowTemplateServiceSettings.newBuilder().setEndpoint(myEndpoint).build();

    // Create a workflow template service client with the configured settings. The client only
    // needs to be created once and can be reused for multiple requests. Using a try-with-resources
    // closes the client, but this can also be done manually with the .close() method.
    try (WorkflowTemplateServiceClient workflowTemplateServiceClient =
        WorkflowTemplateServiceClient.create(workflowTemplateServiceSettings)) {

      // Configure the jobs within the workflow.
      HadoopJob teragenHadoopJob =
          HadoopJob.newBuilder()
              .setMainJarFileUri("file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar")
              .addArgs("teragen")
              .addArgs("1000")
              .addArgs("hdfs:///gen/")
              .build();
      OrderedJob teragen =
          OrderedJob.newBuilder().setHadoopJob(teragenHadoopJob).setStepId("teragen").build();

      HadoopJob terasortHadoopJob =
          HadoopJob.newBuilder()
              .setMainJarFileUri("file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar")
              .addArgs("terasort")
              .addArgs("hdfs:///gen/")
              .addArgs("hdfs:///sort/")
              .build();
      OrderedJob terasort =
          OrderedJob.newBuilder()
              .setHadoopJob(terasortHadoopJob)
              .addPrerequisiteStepIds("teragen")
              .setStepId("terasort")
              .build();

      // Configure the cluster placement for the workflow.
      // Leave "ZoneUri" empty for "Auto Zone Placement".
      // GceClusterConfig gceClusterConfig =
      //     GceClusterConfig.newBuilder().setZoneUri("").build();
      GceClusterConfig gceClusterConfig =
          GceClusterConfig.newBuilder().setZoneUri("us-central1-a").build();
      ClusterConfig clusterConfig =
          ClusterConfig.newBuilder().setGceClusterConfig(gceClusterConfig).build();
      ManagedCluster managedCluster =
          ManagedCluster.newBuilder()
              .setClusterName("my-managed-cluster")
              .setConfig(clusterConfig)
              .build();
      WorkflowTemplatePlacement workflowTemplatePlacement =
          WorkflowTemplatePlacement.newBuilder().setManagedCluster(managedCluster).build();

      // Create the inline workflow template.
      WorkflowTemplate workflowTemplate =
          WorkflowTemplate.newBuilder()
              .addJobs(teragen)
              .addJobs(terasort)
              .setPlacement(workflowTemplatePlacement)
              .build();

      // Submit the instantiated inline workflow template request.
      String parent = RegionName.format(projectId, region);
      OperationFuture<Empty, WorkflowMetadata> instantiateInlineWorkflowTemplateAsync =
          workflowTemplateServiceClient.instantiateInlineWorkflowTemplateAsync(
              parent, workflowTemplate);
      instantiateInlineWorkflowTemplateAsync.get();

      // Print out a success message.
      System.out.printf("Workflow ran successfully.");

    } catch (ExecutionException e) {
      System.err.println(String.format("Error running workflow: %s ", e.getMessage()));
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js riportate nella guida rapida all'utilizzo delle librerie client di Dataproc. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Node.js.

Per eseguire l'autenticazione su Dataproc, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

const dataproc = require('@google-cloud/dataproc');

// TODO(developer): Uncomment and set the following variables
// projectId = 'YOUR_PROJECT_ID'
// region = 'YOUR_REGION'

// Create a client with the endpoint set to the desired region
const client = new dataproc.v1.WorkflowTemplateServiceClient({
  apiEndpoint: `${region}-dataproc.googleapis.com`,
  projectId: projectId,
});

async function instantiateInlineWorkflowTemplate() {
  // Create the formatted parent.
  const parent = client.regionPath(projectId, region);

  // Create the template
  const template = {
    jobs: [
      {
        hadoopJob: {
          mainJarFileUri:
            'file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar',
          args: ['teragen', '1000', 'hdfs:///gen/'],
        },
        stepId: 'teragen',
      },
      {
        hadoopJob: {
          mainJarFileUri:
            'file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar',
          args: ['terasort', 'hdfs:///gen/', 'hdfs:///sort/'],
        },
        stepId: 'terasort',
        prerequisiteStepIds: ['teragen'],
      },
    ],
    placement: {
      managedCluster: {
        clusterName: 'my-managed-cluster',
        config: {
          gceClusterConfig: {
            // Leave 'zoneUri' empty for 'Auto Zone Placement'
            // zoneUri: ''
            zoneUri: 'us-central1-a',
          },
        },
      },
    },
  };

  const request = {
    parent: parent,
    template: template,
  };

  // Submit the request to instantiate the workflow from an inline template.
  const [operation] = await client.instantiateInlineWorkflowTemplate(request);
  await operation.promise();

  // Output a success message
  console.log('Workflow ran successfully.');

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python riportate nella guida rapida all'utilizzo delle librerie client di Dataproc. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Python.

Per eseguire l'autenticazione su Dataproc, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import dataproc_v1 as dataproc


def instantiate_inline_workflow_template(project_id, region):
    """This sample walks a user through submitting a workflow
    for a Cloud Dataproc using the Python client library.

    Args:
        project_id (string): Project to use for running the workflow.
        region (string): Region where the workflow resources should live.
    """

    # Create a client with the endpoint set to the desired region.
    workflow_template_client = dataproc.WorkflowTemplateServiceClient(
        client_options={"api_endpoint": f"{region}-dataproc.googleapis.com:443"}
    )

    parent = f"projects/{project_id}/regions/{region}"

    template = {
        "jobs": [
            {
                "hadoop_job": {
                    "main_jar_file_uri": "file:///usr/lib/hadoop-mapreduce/"
                    "hadoop-mapreduce-examples.jar",
                    "args": ["teragen", "1000", "hdfs:///gen/"],
                },
                "step_id": "teragen",
            },
            {
                "hadoop_job": {
                    "main_jar_file_uri": "file:///usr/lib/hadoop-mapreduce/"
                    "hadoop-mapreduce-examples.jar",
                    "args": ["terasort", "hdfs:///gen/", "hdfs:///sort/"],
                },
                "step_id": "terasort",
                "prerequisite_step_ids": ["teragen"],
            },
        ],
        "placement": {
            "managed_cluster": {
                "cluster_name": "my-managed-cluster",
                "config": {
                    "gce_cluster_config": {
                        # Leave 'zone_uri' empty for 'Auto Zone Placement'
                        # 'zone_uri': ''
                        "zone_uri": "us-central1-a"
                    }
                },
            }
        },
    }

    # Submit the request to instantiate the workflow from an inline template.
    operation = workflow_template_client.instantiate_inline_workflow_template(
        request={"parent": parent, "template": template}
    )
    operation.result()

    # Output a success message.
    print("Workflow ran successfully.")

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta Browser di esempio Google Cloud.