Cloud Composer 1 | Cloud Composer 2 | Cloud Composer 3
Halaman ini menjelaskan cara menskalakan lingkungan Cloud Composer.
Halaman lain tentang penskalaan:
- Untuk panduan tentang cara memilih parameter skala dan performa yang optimal untuk lingkungan Anda, lihat Mengoptimalkan performa dan biaya lingkungan.
- Untuk mengetahui informasi tentang cara kerja penskalaan lingkungan, lihat Penskalaan lingkungan.
Melakukan penskalaan secara vertikal dan horizontal
Opsi untuk penskalaan horizontal:
- Sesuaikan jumlah pekerja minimum dan maksimum.
- Sesuaikan jumlah penjadwal, pemroses DAG, dan pemicu.
Opsi untuk penskalaan vertikal:
- Sesuaikan pekerja, penjadwal, pemicu, pemroses DAG, dan server web. skala dan parameter performa.
- Sesuaikan ukuran lingkungan.
Batas resource
Komponen | Jumlah minimum | Jumlah maksimum | vCPU minimum | vCPU maksimum | Langkah minimum vCPU | Memori minimum (GB) | Memori maksimum (GB) | Langkah minimum memori (GB) | Memori minimum per 1 vCPU (GB) | Memori maksimum per 1 vCPU (GB) | Penyimpanan minimum (GB) | Penyimpanan maksimum (GB) | Langkah minimum penyimpanan (GB) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Penjadwal | 1 | 3 | 0,5 | 1 | 0,5 | 0,5 | 8 | 0,25 | 1 | 8 | 0 | 100 | 1 |
Pemicu | 0 | 10 | 0,5 | 1 | 0,5 | 0,5 | 8 | 0,25 | 1 | 8 | - | - | - |
Server web | - | - | 0,5 | 32 | 0,5, 1, atau kelipatan 2 | 1 | 256 | 0,25 | 1 | 8 | 0 | 100 | 1 |
Pekerja | 1 | 100 | 0,5 | 32 | 0,5, 1, atau kelipatan 2 | 1 | 256 | 0,25 | 1 | 8 | 0 | 100 | 1 |
Prosesor DAG | 1 | 3 | 0,5 | 32 | 0,5, 1, atau kelipatan 2 | 1 | 256 | 0,25 | 1 | 8 | 0 | 100 | 1 |
Menyesuaikan parameter pekerja
Anda dapat menetapkan jumlah pekerja minimum dan maksimum untuk lingkungan Anda. Cloud Composer akan otomatis menskalakan lingkungan Anda dalam batas yang ditetapkan. Anda dapat menyesuaikan batas ini kapan saja.
Anda dapat menentukan jumlah CPU, memori, dan kapasitas disk yang digunakan oleh pekerja Airflow di lingkungan Anda. Dengan cara ini, Anda dapat meningkatkan performa lingkungan, selain penskalaan horizontal yang disediakan dengan menggunakan beberapa pekerja.
Konsol
Di konsol Google Cloud, buka halaman Environments.
Di daftar lingkungan, klik nama lingkungan Anda. Halaman Environment details akan terbuka.
Buka tab Konfigurasi lingkungan.
Di item Resources > Workloads configuration, klik Edit.
Di panel Workloads configuration, sesuaikan parameter untuk pekerja Airflow:
Di kolom Minimum number of workers, tentukan jumlah pekerja Airflow yang harus selalu dijalankan oleh lingkungan Anda. Jumlah pekerja di lingkungan Anda tidak akan turun di bawah jumlah ini selama operasi reguler lingkungan, meskipun jumlah pekerja yang lebih rendah dapat menangani beban.
Di kolom Maximum number of workers, tentukan jumlah maksimum pekerja Airflow yang dapat dijalankan lingkungan Anda. Jumlah pekerja di lingkungan Anda tidak melebihi jumlah ini, meskipun jumlah pekerja yang lebih tinggi diperlukan untuk menangani beban.
Di kolom CPU, Memory, dan Storage, tentukan jumlah CPU, memori, dan penyimpanan untuk pekerja Airflow. Setiap pekerja menggunakan jumlah resource yang ditentukan.
Klik Simpan.
gcloud
Parameter pekerja Airflow berikut tersedia:
--min-workers
: jumlah pekerja Airflow yang harus selalu dijalankan oleh lingkungan Anda. Jumlah pekerja di lingkungan Anda tidak akan turun di bawah jumlah ini, meskipun jumlah pekerja yang lebih rendah dapat menangani beban.--max-workers
: jumlah maksimum pekerja Airflow yang dapat dijalankan oleh lingkungan Anda. Jumlah pekerja di lingkungan Anda tidak melebihi jumlah ini, meskipun jumlah pekerja yang lebih tinggi diperlukan untuk menangani beban.--worker-cpu
: jumlah CPU untuk pekerja Airflow.--worker-memory
: jumlah memori untuk pekerja Airflow.--worker-storage
: jumlah ruang disk untuk pekerja Airflow.
Jalankan perintah Google Cloud CLI berikut:
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--min-workers WORKERS_MIN \
--max-workers WORKERS_MAX \
--worker-cpu WORKER_CPU \
--worker-memory WORKER_MEMORY \
--worker-storage WORKER_STORAGE
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.WORKERS_MIN
: jumlah minimum pekerja Airflow.WORKERS_MAX
: jumlah maksimum pekerja Airflow.WORKER_CPU
: jumlah CPU untuk pekerja, dalam unit vCPU.WORKER_MEMORY
: jumlah memori untuk pekerja.WORKER_STORAGE
: ukuran disk untuk pekerja.
Contoh:
gcloud composer environments update example-environment \
--location us-central1 \
--min-workers 2 \
--max-workers 6 \
--worker-cpu 1 \
--worker-memory 2 \
--worker-storage 2
API
Buat permintaan API
environments.patch
.Dalam permintaan ini:
Di parameter
updateMask
, tentukan kolom yang ingin Anda perbarui. Misalnya, untuk memperbarui semua parameter bagi pekerja, tentukan maskconfig.workloadsConfig.worker.cpu,config.workloadsConfig.worker.memoryGb,config.workloadsConfig.worker.storageGB,config.softwareConfig.workloadsConfig.worker.minCount,config.softwareConfig.workloadsConfig.worker.maxCount
.Dalam isi permintaan, tentukan parameter pekerja baru.
"config": {
"workloadsConfig": {
"worker": {
"minCount": WORKERS_MIN,
"maxCount": WORKERS_MAX,
"cpu": WORKER_CPU,
"memoryGb": WORKER_MEMORY,
"storageGb": WORKER_STORAGE
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.WORKERS_MIN
: jumlah minimum pekerja Airflow.WORKERS_MAX
: jumlah maksimum pekerja Airflow.WORKER_CPU
: jumlah CPU untuk pekerja, dalam unit vCPU.WORKER_MEMORY
: jumlah memori untuk pekerja, dalam GB.WORKER_STORAGE
: ukuran disk untuk pekerja, dalam GB.
Contoh:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.worker.minCount,
// config.workloadsConfig.worker.maxCount
// config.workloadsConfig.worker.cpu,
// config.workloadsConfig.worker.memoryGb,
// config.workloadsConfig.worker.storageGB
"config": {
"workloadsConfig": {
"worker": {
"minCount": 2,
"maxCount": 6,
"cpu": 1,
"memoryGb": 2,
"storageGb": 2
}
}
}
Terraform
Kolom berikut di blok workloads_config.worker
mengontrol
parameter pekerja Airflow. Setiap pekerja menggunakan jumlah resource yang ditentukan.
worker.min_count
: jumlah pekerja Airflow yang harus selalu dijalankan oleh lingkungan Anda. Jumlah pekerja di lingkungan Anda tidak akan turun di bawah jumlah ini, meskipun jumlah pekerja yang lebih rendah dapat menangani beban.worker.max_count
: jumlah maksimum pekerja Airflow yang dapat dijalankan oleh lingkungan Anda. Jumlah pekerja di lingkungan Anda tidak melebihi jumlah ini, meskipun jumlah pekerja yang lebih tinggi diperlukan untuk menangani beban.worker.cpu
: jumlah CPU untuk pekerja Airflow.worker.memory_gb
: jumlah memori untuk pekerja Airflow.worker.storage_gb
: jumlah ruang disk untuk pekerja Airflow.
resource "google_composer_environment" "example" {
provider = google-beta
name = "ENVIRONMENT_NAME"
region = "LOCATION"
config {
workloads_config {
worker {
min_count = WORKERS_MIN
max_count = WORKERS_MAX
cpu = WORKER_CPU
memory_gb = WORKER_MEMORY
storage_gb = WORKER_STORAGE
}
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.WORKERS_MIN
: jumlah minimum pekerja Airflow.WORKERS_MAX
: jumlah maksimum pekerja Airflow.WORKER_CPU
: jumlah CPU untuk pekerja, dalam unit vCPU.WORKER_MEMORY
: jumlah memori untuk pekerja, dalam GB.WORKER_STORAGE
: ukuran disk untuk pekerja, dalam GB.
Contoh:
resource "google_composer_environment" "example" {
provider = google-beta
name = "example-environment"
region = "us-central1"
config {
workloads_config {
worker {
min_count = 2
max_count = 6
cpu = 1
memory_gb = 2
storage_gb = 2
}
}
}
}
Menyesuaikan parameter penjadwal
Lingkungan Anda dapat menjalankan lebih dari satu penjadwal Airflow secara bersamaan. Gunakan beberapa penjadwal untuk mendistribusikan beban di antara beberapa instance penjadwal untuk performa dan keandalan yang lebih baik.
Anda dapat memiliki hingga 3 penjadwal di lingkungan Anda.
Meningkatkan jumlah penjadwal tidak selalu meningkatkan performa Airflow. Misalnya, hanya memiliki satu penjadwal mungkin memberikan performa yang lebih baik daripada memiliki dua. Hal ini dapat terjadi jika penjadwal tambahan tidak digunakan, sehingga menggunakan resource lingkungan Anda tanpa berkontribusi pada performa secara keseluruhan. Performa penjadwal sebenarnya bergantung pada jumlah pekerja Airflow, jumlah DAG dan tugas yang berjalan di lingkungan Anda, serta konfigurasi Airflow dan lingkungan.
Sebaiknya mulai dengan dua penjadwal, lalu pantau performa lingkungan Anda. Jika mengubah jumlah penjadwal, Anda selalu dapat menskalakan lingkungan kembali ke jumlah penjadwal awal.
Untuk informasi selengkapnya tentang cara mengonfigurasi beberapa penjadwal, lihat dokumentasi Airflow.
Anda dapat menentukan jumlah CPU, memori, dan kapasitas disk yang digunakan oleh penjadwal Airflow di lingkungan Anda. Dengan cara ini, Anda dapat meningkatkan performa lingkungan, selain penskalaan horizontal yang disediakan dengan menggunakan beberapa penjadwal.
Konsol
Di konsol Google Cloud, buka halaman Environments.
Di daftar lingkungan, klik nama lingkungan Anda. Halaman Environment details akan terbuka.
Buka tab Konfigurasi lingkungan.
Di item Resources > Workloads configuration, klik Edit.
Di panel Workloads configuration, sesuaikan parameter untuk penjadwal Airflow:
Di menu drop-down Number of schedulers, pilih jumlah penjadwal untuk lingkungan Anda.
Di kolom CPU, Memory, dan Storage, tentukan jumlah CPU, memori, dan penyimpanan untuk penjadwal Airflow. Setiap penjadwal menggunakan jumlah resource yang ditentukan.
Klik Simpan.
gcloud
Parameter penjadwal Airflow berikut tersedia:
--scheduler-count
: jumlah penjadwal di lingkungan Anda.--scheduler-cpu
: jumlah CPU untuk penjadwal Airflow.--scheduler-memory
: jumlah memori untuk penjadwal Airflow.--scheduler-storage
: jumlah ruang disk untuk penjadwal Airflow.
Jalankan perintah Google Cloud CLI berikut:
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--scheduler-cpu SCHEDULER_CPU \
--scheduler-memory SCHEDULER_MEMORY \
--scheduler-storage SCHEDULER_STORAGE \
--scheduler-count SCHEDULER_COUNT
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.SCHEDULER_CPU
: jumlah CPU untuk penjadwal, dalam unit vCPU.SCHEDULER_MEMORY
: jumlah memori untuk penjadwal.SCHEDULER_STORAGE
: ukuran disk untuk penjadwal.SCHEDULER_COUNT
: jumlah penjadwal.
Contoh:
gcloud composer environments update example-environment \
--location us-central1 \
--scheduler-cpu 0.5 \
--scheduler-memory 2.5 \
--scheduler-storage 2 \
--scheduler-count 2
API
Buat permintaan API
environments.patch
.Dalam permintaan ini:
Di parameter
updateMask
, tentukan maskconfig.workloadsConfig.scheduler
untuk mengupdate semua parameter penjadwal atau hanya jumlah penjadwal. Anda juga dapat memperbarui setiap parameter penjadwal kecualicount
dengan menentukan mask. Contohnya,config.workloadsConfig.scheduler.cpu
Dalam isi permintaan, tentukan parameter penjadwal baru.
"config": {
"workloadsConfig": {
"scheduler": {
"cpu": SCHEDULER_CPU,
"memoryGb": SCHEDULER_MEMORY,
"storageGb": SCHEDULER_STORAGE,
"count": SCHEDULER_COUNT
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.SCHEDULER_CPU
: jumlah CPU untuk penjadwal, dalam unit vCPU.SCHEDULER_MEMORY
: jumlah memori untuk penjadwal, dalam GB.SCHEDULER_STORAGE
: ukuran disk untuk penjadwal, dalam GB.SCHEDULER_COUNT
: jumlah penjadwal.
Contoh:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.scheduler
"config": {
"workloadsConfig": {
"scheduler": {
"cpu": 0.5,
"memoryGb": 2.5,
"storageGb": 2,
"count": 2
}
}
}
Terraform
Kolom berikut di blok workloads_config.scheduler
mengontrol
parameter penjadwal Airflow. Setiap penjadwal menggunakan jumlah resource
yang ditentukan.
scheduler.count
: jumlah penjadwal di lingkungan Anda.scheduler.cpu
: jumlah CPU untuk penjadwal Airflow.scheduler.memory_gb
: jumlah memori untuk penjadwal Airflow.scheduler.storage_gb
: jumlah ruang disk untuk penjadwal.
resource "google_composer_environment" "example" {
provider = google-beta
name = "ENVIRONMENT_NAME"
region = "LOCATION"
config {
workloads_config {
scheduler {
cpu = SCHEDULER_CPU
memory_gb = SCHEDULER_MEMORY
storage_gb = SCHEDULER_STORAGE
count = SCHEDULER_COUNT
}
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.SCHEDULER_CPU
: jumlah CPU untuk penjadwal, dalam unit vCPU.SCHEDULER_MEMORY
: jumlah memori untuk penjadwal, dalam GB.SCHEDULER_STORAGE
: ukuran disk untuk penjadwal, dalam GB.SCHEDULER_COUNT
: jumlah penjadwal.
Contoh:
resource "google_composer_environment" "example" {
provider = google-beta
name = "example-environment"
region = "us-central1"
config {
workloads_config {
scheduler {
cpu = 0.5
memory_gb = 1.875
storage_gb = 1
count = 2
}
}
}
}
Menyesuaikan parameter pemicu
Anda dapat menetapkan jumlah pemicu ke nol, tetapi Anda memerlukan setidaknya satu instance pemicu di lingkungan (atau setidaknya dua di lingkungan yang sangat tangguh), untuk menggunakan operator yang dapat ditangguhkan di DAG.
Bergantung pada mode ketahanan lingkungan Anda, ada berbagai kemungkinan konfigurasi untuk jumlah pemicu:
- Ketahanan standar: Anda dapat menjalankan hingga 10 pemicu.
- Ketahanan tinggi: minimal 2 pemicu, hingga maksimum 10.
Meskipun jumlah pemicu ditetapkan ke nol, definisi pod pemicu akan dibuat dan terlihat di cluster lingkungan Anda, tetapi tidak ada beban kerja pemicu yang sebenarnya dijalankan.
Anda juga dapat menentukan jumlah CPU, memori, dan kapasitas disk yang digunakan oleh pemicu Airflow di lingkungan Anda. Dengan cara ini, Anda dapat meningkatkan performa lingkungan, selain penskalaan horizontal yang disediakan dengan menggunakan beberapa pemicu.
Konsol
Di konsol Google Cloud, buka halaman Environments.
Di daftar lingkungan, klik nama lingkungan Anda. Halaman Environment details akan terbuka.
Buka tab Konfigurasi lingkungan.
Di item Resources > Workloads configuration, klik Edit.
Di panel Workloads configuration, sesuaikan parameter untuk pemicu Airflow:
Di bagian Pemicu, di kolom Jumlah pemicu, masukkan jumlah pemicu di lingkungan Anda.
Jika Anda menetapkan minimal satu pemicu untuk lingkungan, gunakan juga kolom CPU dan Memory untuk mengonfigurasi alokasi resource untuk pemicu Anda.
Di CPU dan Memory, tentukan jumlah CPU, memori, dan penyimpanan untuk pemicu Airflow. Setiap pemicu menggunakan jumlah resource yang ditentukan.
Klik Simpan.
gcloud
Parameter pemicu Airflow berikut tersedia:
--triggerer-count
: jumlah pemicu di lingkungan Anda.- Untuk lingkungan ketahanan standar, gunakan nilai antara
0
dan10
. - Untuk lingkungan yang sangat tangguh, gunakan
0
, atau nilai antara2
dan10
.
- Untuk lingkungan ketahanan standar, gunakan nilai antara
--triggerer-cpu
: jumlah CPU untuk pemicu Airflow.--triggerer-memory
: jumlah memori untuk pemicu Airflow.
Jalankan perintah Google Cloud CLI berikut:
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--triggerer-count TRIGGERER_COUNT \
--triggerer-cpu TRIGGERER_CPU \
--triggerer-memory TRIGGERER_MEMORY
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.TRIGGERER_COUNT
: jumlah pemicu.TRIGGERER_CPU
: jumlah CPU untuk pemicu, dalam unit vCPU.TRIGGERER_MEMORY
: jumlah memori untuk pemicu.
Contoh:
- Menskalakan ke empat instance pemicu:
gcloud composer environments update example-environment \
--location us-central1 \
--triggerer-count 4 \
--triggerer-cpu 1 \
--triggerer-memory 1
```
- Disable triggerers by setting triggerer count to `0`. This operation
doesn't require specifying CPU or memory for the triggerers.
```bash
gcloud composer environments update example-environment \
--location us-central1 \
--triggerer-count 0
```
API
Dalam parameter kueri
updateMask
, tentukan maskconfig.workloadsConfig.triggerer
.Dalam isi permintaan, tentukan ketiga parameter untuk pemicu.
"config": {
"workloadsConfig": {
"triggerer": {
"count": TRIGGERER_COUNT,
"cpu": TRIGGERER_CPU,
"memoryGb": TRIGGERER_MEMORY
}
}
}
Ganti kode berikut:
TRIGGERER_COUNT
: jumlah pemicu.- Untuk lingkungan ketahanan standar, gunakan nilai antara
0
dan10
. - Untuk lingkungan yang sangat tangguh, gunakan
0
, atau nilai antara2
dan10
.
- Untuk lingkungan ketahanan standar, gunakan nilai antara
TRIGGERER_CPU
: jumlah CPU untuk pemicu, dalam unit vCPU.TRIGGERER_MEMORY
: jumlah memori untuk pemicu.
Contoh:
- Nonaktifkan pemicu dengan menetapkan jumlah pemicu ke
0
. Operasi ini tidak memerlukan penentuan CPU atau memori untuk pemicu.
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.triggerer
"config": {
"workloadsConfig": {
"triggerer": {
"count": 0
}
}
}
- Menskalakan ke empat instance pemicu:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.triggerer
"config": {
"workloadsConfig": {
"triggerer": {
"count": 4,
"cpu": 1,
"memoryGb": 1
}
}
}
Terraform
Kolom berikut di blok workloads_config.triggerer
mengontrol
parameter pemicu Airflow. Setiap pemicu menggunakan jumlah resource
yang ditentukan.
triggerer.count
: jumlah pemicu di lingkungan Anda.- Untuk lingkungan ketahanan standar, gunakan nilai antara
0
dan10
. - Untuk lingkungan yang sangat tangguh, gunakan
0
, atau nilai antara2
dan10
.
- Untuk lingkungan ketahanan standar, gunakan nilai antara
triggerer.cpu
: jumlah CPU untuk pemicu Airflow.triggerer.memory_gb
: jumlah memori untuk pemicu Airflow.
resource "google_composer_environment" "example" {
provider = google-beta
name = "ENVIRONMENT_NAME"
region = "LOCATION"
config {
workloads_config {
triggerer {
count = TRIGGERER_COUNT
cpu = TRIGGERER_CPU
memory_gb = TRIGGERER_MEMORY
}
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.TRIGGERER_COUNT
: jumlah pemicu.TRIGGERER_CPU
: jumlah CPU untuk pemicu, dalam unit vCPU.TRIGGERER_MEMORY
: jumlah memori untuk pemicu, dalam GB.
Contoh:
resource "google_composer_environment" "example" {
provider = google-beta
name = "example-environment"
region = "us-central1"
config {
workloads_config {
triggerer {
count = 1
cpu = 0.5
memory_gb = 0.5
}
}
}
}
Menyesuaikan parameter prosesor DAG
Anda dapat menentukan jumlah pemroses DAG di lingkungan dan jumlah CPU, memori, dan ruang disk yang digunakan oleh setiap pemroses DAG.
Konsol
Di konsol Google Cloud, buka halaman Environments.
Di daftar lingkungan, klik nama lingkungan Anda. Halaman Environment details akan terbuka.
Buka tab Konfigurasi lingkungan.
Di item Resources > Workloads configuration, klik Edit.
Di panel Workloads configuration, sesuaikan parameter untuk pemroses DAG Airflow:
Di menu drop-down Number of DAG processors, pilih jumlah pemroses DAG untuk lingkungan Anda.
Di kolom CPU, Memory, dan Storage, tentukan jumlah CPU, memori, dan penyimpanan untuk pemroses DAG Airflow. Setiap pemroses DAG menggunakan jumlah resource yang ditentukan.
Klik Simpan.
gcloud
Parameter pemroses DAG Airflow berikut tersedia:
--dag-processor-count
: jumlah pemroses DAG.--dag-processor-cpu
: jumlah CPU untuk prosesor DAG.--dag-processor-memory
: jumlah memori untuk pemroses DAG.--dag-processor-storage
: jumlah ruang disk untuk pemroses DAG.
Jalankan perintah Google Cloud CLI berikut:
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--dag-processor-count DAG_PROCESSOR_COUNT \
--dag-processor-cpu DAG_PROCESSOR_CPU \
--dag-processor-memory DAG_PROCESSOR_MEMORY \
--dag-processor-storage DAG_PROCESSOR_STORAGE
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.DAG_PROCESSOR_CPU
: jumlah CPU untuk prosesor DAG.DAG_PROCESSOR_MEMORY
: jumlah memori untuk pemroses DAG.DAG_PROCESSOR_STORAGE
: jumlah ruang disk untuk pemroses DAG.
Contoh:
gcloud composer environments update example-environment \
--location us-central1 \
--dag-processor-count 2 \
--dag-processor-cpu 0.5 \
--dag-processor-memory 2 \
--dag-processor-storage 1
API
Buat permintaan API
environments.patch
.Dalam permintaan ini:
Pada parameter
updateMask
, tentukan maskconfig.workloadsConfig.dagProcessor
untuk memperbarui semua parameter prosesor DAG, termasuk jumlah prosesor DAG. Anda juga dapat memperbarui setiap parameter pemroses DAG dengan menentukan mask. Contohnya,config.workloadsConfig.dagProcessor.cpu,config.workloadsConfig.dagProcessor.memoryGb,config.workloadsConfig.dagProcessor.storageGb
.Dalam isi permintaan, tentukan parameter pemroses DAG baru.
"config": {
"workloadsConfig": {
"dagProcessor": {
"count": DAG_PROCESSOR_COUNT,
"cpu": DAG_PROCESSOR_CPU,
"memoryGb": DAG_PROCESSOR_MEMORY,
"storageGb": DAG_PROCESSOR_STORAGE
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.DAG_PROCESSOR_COUNT
: jumlah pemroses DAG.DAG_PROCESSOR_CPU
: jumlah CPU untuk pemroses DAG, dalam unit vCPU.DAG_PROCESSOR_MEMORY
: jumlah memori untuk pemroses DAG, dalam GB.DAG_PROCESSOR_STORAGE
: jumlah ruang disk untuk pemroses DAG, dalam GB.
Contoh:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.dagProcessor
"config": {
"workloadsConfig": {
"scheduler": {
"count": 2
"cpu": 0.5,
"memoryGb": 2.5,
"storageGb": 2
}
}
}
Terraform
Kolom berikut di blok workloads_config.dag_processor
mengontrol
parameter pemroses DAG Airflow. Setiap pemroses DAG menggunakan jumlah resource
yang ditentukan.
dag_processor.count
: jumlah prosesor DAG di lingkungan Anda.dag_processor.cpu
: jumlah CPU untuk pemroses DAG.dag_processor.memory_gb
: jumlah memori untuk prosesor DAG.dag_processor.storage_gb
jumlah ruang disk untuk pemroses DAG.
resource "google_composer_environment" "example" {
provider = google-beta
name = "ENVIRONMENT_NAME"
region = "LOCATION"
config {
workloads_config {
dag_processor {
count = DAG_PROCESSOR_COUNT
cpu = DAG_PROCESSOR_CPU
memory_gb = DAG_PROCESSOR_MEMORY
storage_gb = DAG_PROCESSOR_STORAGE
}
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.DAG_PROCESSOR_COUNT
: jumlah pemroses DAG.DAG_PROCESSOR_CPU
: jumlah CPU untuk pemroses DAG, dalam unit vCPU.DAG_PROCESSOR_MEMORY
: jumlah memori untuk pemroses DAG, dalam GB.DAG_PROCESSOR_STORAGE
: jumlah ruang disk untuk pemroses DAG, dalam GB.
Contoh:
resource "google_composer_environment" "example" {
provider = google-beta
name = "example-environment"
region = "us-central1"
config {
workloads_config {
dag_processor {
count = 2
cpu = 0.5
memory_gb = 2
storage_gb = 1
}
}
}
}
Menyesuaikan parameter server web
Anda dapat menentukan jumlah CPU, memori, dan kapasitas disk yang digunakan oleh server web Airflow di lingkungan Anda. Dengan cara ini, Anda dapat menskalakan performa UI Airflow, misalnya, untuk mencocokkan permintaan yang berasal dari sejumlah besar pengguna atau sejumlah besar DAG terkelola.
Konsol
Di konsol Google Cloud, buka halaman Environments.
Di daftar lingkungan, klik nama lingkungan Anda. Halaman Environment details akan terbuka.
Buka tab Konfigurasi lingkungan.
Di item Resources > Workloads configuration, klik Edit.
Di panel Workloads configuration, sesuaikan parameter untuk server web. Di kolom CPU, Memory, dan Storage, tentukan jumlah CPU, memori, dan penyimpanan untuk server web.
Klik Simpan.
gcloud
Parameter server web Airflow berikut tersedia:
--web-server-cpu
: jumlah CPU untuk server web Airflow.--web-server-memory
: jumlah memori untuk server web Airflow.--web-server-storage
: jumlah ruang disk untuk server web Airflow.
Jalankan perintah Google Cloud CLI berikut:
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--web-server-cpu WEB_SERVER_CPU \
--web-server-memory WEB_SERVER_MEMORY \
--web-server-storage WEB_SERVER_STORAGE
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.WEB_SERVER_CPU
: jumlah CPU untuk server web, dalam unit vCPU.WEB_SERVER_MEMORY
: jumlah memori untuk server web.WEB_SERVER_STORAGE
: jumlah memori untuk server web.
Contoh:
gcloud composer environments update example-environment \
--location us-central1 \
--web-server-cpu 1 \
--web-server-memory 2.5 \
--web-server-storage 2
API
Buat permintaan API
environments.patch
.Dalam permintaan ini:
Di parameter
updateMask
, tentukan maskconfig.workloadsConfig.webServer
untuk memperbarui semua parameter server web. Anda juga dapat memperbarui setiap parameter server web dengan menentukan mask untuk parameter tersebut:config.workloadsConfig.webServer.cpu
,config.workloadsConfig.webServer.memoryGb
,config.workloadsConfig.webServer.storageGb
.Dalam isi permintaan, tentukan parameter server web baru.
"config": {
"workloadsConfig": {
"webServer": {
"cpu": WEB_SERVER_CPU,
"memoryGb": WEB_SERVER_MEMORY,
"storageGb": WEB_SERVER_STORAGE
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.WEB_SERVER_CPU
: jumlah CPU untuk server web, dalam unit vCPU.WEB_SERVER_MEMORY
: jumlah memori untuk server web, dalam GB.WEB_SERVER_STORAGE
: ukuran disk untuk server web, dalam GB.
Contoh:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.workloadsConfig.webServer.cpu,
// config.workloadsConfig.webServer.memoryGb,
// config.workloadsConfig.webServer.storageGb
"config": {
"workloadsConfig": {
"webServer": {
"cpu": 0.5,
"memoryGb": 2.5,
"storageGb": 2
}
}
}
Terraform
Kolom berikut di blok workloads_config.web_server
mengontrol
parameter server web.
web_server.cpu
: jumlah CPU untuk server web.web_server.memory_gb
: jumlah memori untuk server web.web_server.storage_gb
: jumlah ruang disk untuk server web.
resource "google_composer_environment" "example" {
provider = google-beta
name = "ENVIRONMENT_NAME"
region = "LOCATION"
config {
workloads_config {
web_server {
cpu = WEB_SERVER_CPU
memory_gb = WEB_SERVER_MEMORY
storage_gb = WEB_SERVER_STORAGE
}
}
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.WEB_SERVER_CPU
: jumlah CPU untuk server web, dalam unit vCPU.WEB_SERVER_MEMORY
: jumlah memori untuk server web, dalam GB.WEB_SERVER_STORAGE
: ukuran disk untuk server web, dalam GB.
Contoh:
resource "google_composer_environment" "example" {
provider = google-beta
name = "example-environment"
region = "us-central1"
config {
workloads_config {
web_server {
cpu = 0.5
memory_gb = 1.875
storage_gb = 1
}
}
}
}
Menyesuaikan ukuran lingkungan
Ukuran lingkungan mengontrol parameter performa infrastruktur Cloud Composer terkelola yang mencakup, misalnya, database Airflow.
Pertimbangkan untuk memilih ukuran lingkungan yang lebih besar jika Anda ingin menjalankan sejumlah besar DAG dan tugas.
Konsol
Di konsol Google Cloud, buka halaman Environments.
Di daftar lingkungan, klik nama lingkungan Anda. Halaman Environment details akan terbuka.
Buka tab Konfigurasi lingkungan.
Di item Resources > Workloads configuration, klik Edit.
Di item Resources > Core infrastructure, klik Edit.
Di panel Core infrastructure, di kolom Environment size, tentukan ukuran lingkungan.
Klik Simpan.
gcloud
Argumen --environment-size
mengontrol ukuran lingkungan:
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--environment-size ENVIRONMENT_SIZE
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.ENVIRONMENT_SIZE
:small
,medium
, ataularge
.
Contoh:
gcloud composer environments update example-environment \
--location us-central1 \
--environment-size medium
API
Buat permintaan API
environments.patch
.Dalam permintaan ini:
Dalam parameter
updateMask
, tentukan maskconfig.environmentSize
.Dalam isi permintaan, tentukan ukuran lingkungan.
"config": {
"environmentSize": "ENVIRONMENT_SIZE"
}
Ganti kode berikut:
ENVIRONMENT_SIZE
: ukuran lingkungan,ENVIRONMENT_SIZE_SMALL
,ENVIRONMENT_SIZE_MEDIUM
, atauENVIRONMENT_SIZE_LARGE
.
Contoh:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.environmentSize
"config": {
"environmentSize": "ENVIRONMENT_SIZE_MEDIUM"
}
Terraform
Kolom environment_size
di blok config
mengontrol ukuran
lingkungan:
resource "google_composer_environment" "example" {
provider = google-beta
name = "ENVIRONMENT_NAME"
region = "LOCATION"
config {
environment_size = "ENVIRONMENT_SIZE"
}
}
Ganti kode berikut:
ENVIRONMENT_NAME
: nama lingkungan.LOCATION
: region tempat lingkungan berada.ENVIRONMENT_SIZE
: ukuran lingkungan,ENVIRONMENT_SIZE_SMALL
,ENVIRONMENT_SIZE_MEDIUM
, atauENVIRONMENT_SIZE_LARGE
.
Contoh:
resource "google_composer_environment" "example" {
provider = google-beta
name = "example-environment"
region = "us-central1"
config {
environment_size = "ENVIRONMENT_SIZE_SMALL"
}
}
}
Langkah selanjutnya
- Performa dan penskalaan lingkungan
- Harga Cloud Composer
- Memperbarui lingkungan
- Arsitektur lingkungan