A 15 de setembro de 2026, todos os ambientes do Cloud Composer 1 e do Cloud Composer 2 versão 2.0.x vão atingir o fim da vida útil planeado e não vai poder usá-los. Recomendamos que planeie a migração para o Cloud Composer 3.
Esta página descreve como pode agrupar tarefas nos seus pipelines do Airflow
usando os seguintes padrões de design:
Agrupar tarefas no gráfico DAG.
Acionar DAGs secundários a partir de um DAG principal.
Agrupar tarefas com o operador TaskGroup.
Agrupe tarefas no gráfico DAG
Para agrupar tarefas em determinadas fases do seu pipeline, pode usar relações entre as tarefas no ficheiro DAG.
Considere o seguinte exemplo:
Figura 1. As tarefas podem ser agrupadas num DAG do Airflow (clique para aumentar)
Neste fluxo de trabalho, as tarefas op-1 e op-2 são executadas em conjunto após a tarefa
inicial start. Pode fazê-lo agrupando tarefas com a declaração
start >> [task_1, task_2].
O exemplo seguinte apresenta uma implementação completa deste DAG:
fromairflowimportDAGfromairflow.operators.bashimportBashOperatorfromairflow.operators.dummyimportDummyOperatorfromairflow.utils.datesimportdays_agoDAG_NAME="all_tasks_in_one_dag"args={"owner":"airflow","start_date":days_ago(1),"schedule_interval":"@once"}withDAG(dag_id=DAG_NAME,default_args=args)asdag:start=DummyOperator(task_id="start")task_1=BashOperator(task_id="op-1",bash_command=":",dag=dag)task_2=BashOperator(task_id="op-2",bash_command=":",dag=dag)some_other_task=DummyOperator(task_id="some-other-task")task_3=BashOperator(task_id="op-3",bash_command=":",dag=dag)task_4=BashOperator(task_id="op-4",bash_command=":",dag=dag)end=DummyOperator(task_id="end")start >> [task_1,task_2] >> some_other_task >> [task_3,task_4] >> end
Figura 2. Os DAGs podem ser acionados a partir de um DAG com o
TriggerDagRunOperator (clique para aumentar)
Neste fluxo de trabalho, os blocos dag_1 e dag_2 representam uma série de tarefas agrupadas num DAG separado no ambiente do Cloud Composer.
A implementação deste fluxo de trabalho requer dois ficheiros DAG separados.
O ficheiro DAG de controlo tem o seguinte aspeto:
fromairflowimportDAGfromairflow.operators.dummyimportDummyOperatorfromairflow.operators.trigger_dagrunimportTriggerDagRunOperatorfromairflow.utils.datesimportdays_agowithDAG(dag_id="controller_dag_to_trigger_other_dags",default_args={"owner":"airflow"},start_date=days_ago(1),schedule_interval="@once",)asdag:start=DummyOperator(task_id="start")trigger_1=TriggerDagRunOperator(task_id="dag_1",trigger_dag_id="dag-to-trigger",# Ensure this equals the dag_id of the DAG to triggerconf={"message":"Hello World"},)trigger_2=TriggerDagRunOperator(task_id="dag_2",trigger_dag_id="dag-to-trigger",# Ensure this equals the dag_id of the DAG to triggerconf={"message":"Hello World"},)some_other_task=DummyOperator(task_id="some-other-task")end=DummyOperator(task_id="end")start >> trigger_1 >> some_other_task >> trigger_2 >> end
A implementação do DAG filho, que é acionado pelo DAG de controlo, tem o seguinte aspeto:
Pode usar o operador TaskGroup para agrupar tarefas no seu DAG. As tarefas definidas num bloco TaskGroup continuam a fazer parte do DAG principal.
Considere o seguinte exemplo:
Figura 3. As tarefas podem ser agrupadas visualmente na IU com o operador TaskGroup (clique para aumentar)
As tarefas op-1 e op-2 estão agrupadas num bloco com o ID
taskgroup_1. Uma implementação deste fluxo de trabalho tem o seguinte aspeto:
fromairflow.models.dagimportDAGfromairflow.operators.bashimportBashOperatorfromairflow.operators.dummyimportDummyOperatorfromairflow.utils.datesimportdays_agofromairflow.utils.task_groupimportTaskGroupwithDAG(dag_id="taskgroup_example",start_date=days_ago(1))asdag:start=DummyOperator(task_id="start")withTaskGroup("taskgroup_1",tooltip="task group #1")assection_1:task_1=BashOperator(task_id="op-1",bash_command=":")task_2=BashOperator(task_id="op-2",bash_command=":")withTaskGroup("taskgroup_2",tooltip="task group #2")assection_2:task_3=BashOperator(task_id="op-3",bash_command=":")task_4=BashOperator(task_id="op-4",bash_command=":")some_other_task=DummyOperator(task_id="some-other-task")end=DummyOperator(task_id="end")start >> section_1 >> some_other_task >> section_2 >> end
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-29 UTC."],[[["\u003cp\u003eThis document outlines three methods for grouping tasks within Airflow pipelines in Cloud Composer 3: grouping tasks in the DAG graph, triggering child DAGs from a parent DAG, and using the \u003ccode\u003eTaskGroup\u003c/code\u003e operator.\u003c/p\u003e\n"],["\u003cp\u003eGrouping tasks in the DAG graph involves defining relationships between tasks, demonstrated by the example \u003ccode\u003estart >> [task_1, task_2]\u003c/code\u003e, which executes \u003ccode\u003etask_1\u003c/code\u003e and \u003ccode\u003etask_2\u003c/code\u003e concurrently after \u003ccode\u003estart\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eParent DAGs can trigger child DAGs using the \u003ccode\u003eTriggerDagRunOperator\u003c/code\u003e, requiring separate DAG files for the parent and each child, with the \u003ccode\u003etrigger_dag_id\u003c/code\u003e in the parent matching the child's \u003ccode\u003edag_id\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eTaskGroup\u003c/code\u003e operator allows for visually grouping tasks together within a DAG, where tasks within the \u003ccode\u003eTaskGroup\u003c/code\u003e block are still part of the main DAG, as demonstrated with the \u003ccode\u003etaskgroup_1\u003c/code\u003e and \u003ccode\u003etaskgroup_2\u003c/code\u003e examples.\u003c/p\u003e\n"],["\u003cp\u003eThe use of SubDAGs for grouping tasks is strongly discouraged due to frequent performance and functional issues, and is instead recommended to use the other three methods that are listed.\u003c/p\u003e\n"]]],[],null,["\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\n**Cloud Composer 3** \\| [Cloud Composer 2](/composer/docs/composer-2/group-tasks-inside-dags \"View this page for Cloud Composer 2\") \\| [Cloud Composer 1](/composer/docs/composer-1/group-tasks-inside-dags \"View this page for Cloud Composer 1\")\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\nThis page describes how you can group tasks in your Airflow pipelines\nusing the following design patterns:\n\n- Grouping tasks in the DAG graph.\n- Triggering children DAGs from a parent DAG.\n- Grouping tasks with the `TaskGroup` operator.\n\n| **Important:** Airflow provides [SubDAGs](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#subdags) to address repeating tasks. Despite being a common design pattern for grouping tasks together, SubDAGs often cause performance and functional issues, and is deprecated in Airflow. We recommend to **avoid using SubDAGs to group tasks together** in your workflow and prefer one of the alternative approaches described in this page.\n\nGroup tasks in the DAG graph\n\nTo group tasks in certain phases of your pipeline, you can use relationships\nbetween the tasks in your DAG file.\n\nConsider the following example:\n[](/static/composer/docs/images/workflow-group-dags.png) **Figure 1.** Tasks can be grouped together in an Airflow DAG (click to enlarge)\n\nIn this workflow, tasks `op-1` and `op-2` run together after the initial\ntask `start`. You can achieve this by grouping tasks together with the statement\n`start \u003e\u003e [task_1, task_2]`.\n\nThe following example provides a complete implementation of this DAG:\n\n\n from airflow import DAG\n from airflow.operators.bash import BashOperator\n from airflow.operators.dummy import DummyOperator\n from airflow.utils.dates import days_ago\n\n DAG_NAME = \"all_tasks_in_one_dag\"\n\n args = {\"owner\": \"airflow\", \"start_date\": days_ago(1), \"schedule_interval\": \"@once\"}\n\n with DAG(dag_id=DAG_NAME, default_args=args) as dag:\n start = DummyOperator(task_id=\"start\")\n\n task_1 = BashOperator(task_id=\"op-1\", bash_command=\":\", dag=dag)\n\n task_2 = BashOperator(task_id=\"op-2\", bash_command=\":\", dag=dag)\n\n some_other_task = DummyOperator(task_id=\"some-other-task\")\n\n task_3 = BashOperator(task_id=\"op-3\", bash_command=\":\", dag=dag)\n\n task_4 = BashOperator(task_id=\"op-4\", bash_command=\":\", dag=dag)\n\n end = DummyOperator(task_id=\"end\")\n\n start \u003e\u003e [task_1, task_2] \u003e\u003e some_other_task \u003e\u003e [task_3, task_4] \u003e\u003e end\n\n\u003cbr /\u003e\n\n\nTrigger children DAGs from a parent DAG\n\nYou can trigger one DAG from another DAG with the\n[`TriggerDagRunOperator` operator](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/trigger_dagrun/).\n\nConsider the following example:\n[](/static/composer/docs/images/workflow-trigger-dags.png) **Figure 2.** DAGs can be triggered from within a DAG with the TriggerDagRunOperator (click to enlarge)\n\nIn this workflow, the blocks `dag_1` and `dag_2` represent a series of tasks\nthat are grouped together in a separate DAG in the Cloud Composer\nenvironment.\n\nThe implementation of this workflow requires two separate DAG files.\nThe controlling DAG file looks like the following:\n\n\n from airflow import DAG\n from airflow.operators.dummy import DummyOperator\n from airflow.operators.trigger_dagrun import TriggerDagRunOperator\n from airflow.utils.dates import days_ago\n\n\n with DAG(\n dag_id=\"controller_dag_to_trigger_other_dags\",\n default_args={\"owner\": \"airflow\"},\n start_date=days_ago(1),\n schedule_interval=\"@once\",\n ) as dag:\n start = DummyOperator(task_id=\"start\")\n\n trigger_1 = TriggerDagRunOperator(\n task_id=\"dag_1\",\n trigger_dag_id=\"dag-to-trigger\", # Ensure this equals the dag_id of the DAG to trigger\n conf={\"message\": \"Hello World\"},\n )\n trigger_2 = TriggerDagRunOperator(\n task_id=\"dag_2\",\n trigger_dag_id=\"dag-to-trigger\", # Ensure this equals the dag_id of the DAG to trigger\n conf={\"message\": \"Hello World\"},\n )\n\n some_other_task = DummyOperator(task_id=\"some-other-task\")\n\n end = DummyOperator(task_id=\"end\")\n\n start \u003e\u003e trigger_1 \u003e\u003e some_other_task \u003e\u003e trigger_2 \u003e\u003e end\n\n\u003cbr /\u003e\n\n\n| **Note:** The value for `trigger_dag_id` inside `TriggerDagRunOperator` must match the `dag_id` value of the DAG you want to trigger.\n\nThe implementation of the child DAG, which is triggered by the controlling\nDAG, looks like the following:\n\n\n from airflow import DAG\n from airflow.operators.dummy import DummyOperator\n from airflow.utils.dates import days_ago\n\n DAG_NAME = \"dag-to-trigger\"\n\n args = {\"owner\": \"airflow\", \"start_date\": days_ago(1), \"schedule_interval\": \"None\"}\n\n with DAG(dag_id=DAG_NAME, default_args=args) as dag:\n dag_task = DummyOperator(task_id=\"dag-task\")\n\n\u003cbr /\u003e\n\n\nYou must [upload both DAG files](/composer/docs/composer-3/manage-dags#add)\nin your Cloud Composer environment for the DAG to work.\n\nGrouping tasks with the TaskGroup operator\n\nYou can use the\n[`TaskGroup` operator](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#taskgroups) to group tasks\ntogether in your DAG. Tasks defined within a `TaskGroup` block are still part\nof the main DAG.\n\nConsider the following example:\n[](/static/composer/docs/images/workflow-taskgroup-dag.png) **Figure 3.** Tasks can be visually grouped together in the UI with the TaskGroup operator (click to enlarge)\n\nThe tasks `op-1` and `op-2` are grouped together in a block with ID\n`taskgroup_1`. An implementation of this workflow looks like the following code: \n\n from airflow.models.dag import DAG\n from airflow.operators.bash import BashOperator\n from airflow.operators.dummy import DummyOperator\n from airflow.utils.dates import days_ago\n from airflow.utils.task_group import TaskGroup\n\n with DAG(dag_id=\"taskgroup_example\", start_date=days_ago(1)) as dag:\n start = DummyOperator(task_id=\"start\")\n\n with TaskGroup(\"taskgroup_1\", tooltip=\"task group #1\") as section_1:\n task_1 = BashOperator(task_id=\"op-1\", bash_command=\":\")\n task_2 = BashOperator(task_id=\"op-2\", bash_command=\":\")\n\n with TaskGroup(\"taskgroup_2\", tooltip=\"task group #2\") as section_2:\n task_3 = BashOperator(task_id=\"op-3\", bash_command=\":\")\n task_4 = BashOperator(task_id=\"op-4\", bash_command=\":\")\n\n some_other_task = DummyOperator(task_id=\"some-other-task\")\n\n end = DummyOperator(task_id=\"end\")\n\n start \u003e\u003e section_1 \u003e\u003e some_other_task \u003e\u003e section_2 \u003e\u003e end\n\nWhat's next\n\n- [Write DAGs](/composer/docs/composer-3/write-dags)\n- [Test DAGs](/composer/docs/composer-3/test-dags)"]]